Cargando…
Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network
Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is...
Autores principales: | Jiang, Peng, Hu, Zhixin, Liu, Jun, Yu, Shanen, Wu, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087483/ https://www.ncbi.nlm.nih.gov/pubmed/27754386 http://dx.doi.org/10.3390/s16101695 |
Ejemplares similares
-
Sensor Data-Driven Bearing Fault Diagnosis Based on Deep Convolutional Neural Networks and S-Transform
por: Li, Guoqiang, et al.
Publicado: (2019) -
Fault Diagnosis from Raw Sensor Data Using Deep Neural Networks Considering Temporal Coherence
por: Zhang, Ran, et al.
Publicado: (2017) -
An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox
por: Jing, Luyang, et al.
Publicado: (2017) -
An Ensemble Convolutional Neural Networks for Bearing Fault Diagnosis Using Multi-Sensor Data
por: Liu, Yang, et al.
Publicado: (2019) -
Deep residual neural-network-based robot joint fault diagnosis method
por: Pan, Jinghui, et al.
Publicado: (2022)