Cargando…
A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks
The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral c...
Autores principales: | Ma, Tao, Wang, Fen, Cheng, Jianjun, Yu, Yang, Chen, Xiaoyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087489/ https://www.ncbi.nlm.nih.gov/pubmed/27754380 http://dx.doi.org/10.3390/s16101701 |
Ejemplares similares
-
An intrusion detection algorithm for sensor network based on normalized cut spectral clustering
por: Yang, Gaoming, et al.
Publicado: (2019) -
Ensemble Model Based on Hybrid Deep Learning for Intrusion Detection in Smart Grid Networks
por: AlHaddad, Ulaa, et al.
Publicado: (2023) -
Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security
por: Kang, Min-Joo, et al.
Publicado: (2016) -
Intrusion-Aware Alert Validation Algorithm for Cooperative Distributed Intrusion Detection Schemes of Wireless Sensor Networks
por: Shaikh, Riaz Ahmed, et al.
Publicado: (2009) -
An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network
por: Sun, Xuemei, et al.
Publicado: (2015)