Cargando…

Self-Tuning Fully-Connected PID Neural Network System for Distributed Temperature Sensing and Control of Instrument with Multi-Modules

High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial–temporal complexity. This paper presents a multi-input multi-output (MIMO) self-tuning temperature sensing and control system for efficiently modulating the temperat...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhen, Ma, Cheng, Zhu, Rong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087497/
https://www.ncbi.nlm.nih.gov/pubmed/27754436
http://dx.doi.org/10.3390/s16101709
Descripción
Sumario:High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial–temporal complexity. This paper presents a multi-input multi-output (MIMO) self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional–integral–derivative (PID) neural network (FCPIDNN) and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.