Cargando…
Hierarchical Activity Recognition Using Smart Watches and RGB-Depth Cameras
Human activity recognition is important for healthcare and lifestyle evaluation. In this paper, a novel method for activity recognition by jointly considering motion sensor data recorded by wearable smart watches and image data captured by RGB-Depth (RGB-D) cameras is presented. A normalized cross c...
Autores principales: | Li, Zhen, Wei, Zhiqiang, Huang, Lei, Zhang, Shugang, Nie, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087501/ https://www.ncbi.nlm.nih.gov/pubmed/27754458 http://dx.doi.org/10.3390/s16101713 |
Ejemplares similares
-
Automatic Ankle Angle Detection by Integrated RGB and Depth Camera System
por: Díaz-San Martín, Guillermo, et al.
Publicado: (2021) -
A Review on Human Activity Recognition Using Vision-Based Method
por: Zhang, Shugang, et al.
Publicado: (2017) -
Dense RGB-D SLAM with Multiple Cameras
por: Meng, Xinrui, et al.
Publicado: (2018) -
RGB-Depth Camera-Based Assessment of Motor Capacity: Normative Data for Six Standardized Motor Tasks
por: Röhling, Hanna Marie, et al.
Publicado: (2022) -
A New Approach for Combining Time-of-Flight and RGB Cameras Based on Depth-Dependent Planar Projective Transformations
por: Salinas, Carlota, et al.
Publicado: (2015)