Cargando…
Hierarchical Sparse Learning with Spectral-Spatial Information for Hyperspectral Imagery Denoising
During the acquisition process hyperspectral images (HSI) are inevitably corrupted by various noises, which greatly influence their visual impression and subsequent applications. In this paper, a novel Bayesian approach integrating hierarchical sparse learning and spectral-spatial information is pro...
Autores principales: | Liu, Shuai, Jiao, Licheng, Yang, Shuyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087505/ https://www.ncbi.nlm.nih.gov/pubmed/27763511 http://dx.doi.org/10.3390/s16101718 |
Ejemplares similares
-
Group Sparse Representation Based on Nonlocal Spatial and Local Spectral Similarity for Hyperspectral Imagery Classification
por: Yu, Haoyang, et al.
Publicado: (2018) -
Hyperspectral Imagery Super-Resolution by Compressive Sensing Inspired Dictionary Learning and Spatial-Spectral Regularization
por: Huang, Wei, et al.
Publicado: (2015) -
Hierarchical Spatial-Spectral Feature Extraction with Long Short Term Memory (LSTM) for Mineral Identification Using Hyperspectral Imagery
por: Zhao, Huijie, et al.
Publicado: (2020) -
Weighted Sparseness-Based Anomaly Detection for Hyperspectral Imagery
por: Lian, Xing, et al.
Publicado: (2023) -
Sparse Feature Learning of Hyperspectral Imagery via Multiobjective-Based Extreme Learning Machine
por: Fang, Xiaoping, et al.
Publicado: (2020)