Cargando…

Decoupling Control of Micromachined Spinning-Rotor Gyroscope with Electrostatic Suspension

A micromachined gyroscope in which a high-speed spinning rotor is suspended electrostatically in a vacuum cavity usually functions as a dual-axis angular rate sensor. An inherent coupling error between the two sensing axes exists owing to the angular motion of the spinning rotor being controlled by...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Boqian, Wang, Shunyue, Li, Haixia, He, Xiaoxia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087532/
https://www.ncbi.nlm.nih.gov/pubmed/27775624
http://dx.doi.org/10.3390/s16101747
Descripción
Sumario:A micromachined gyroscope in which a high-speed spinning rotor is suspended electrostatically in a vacuum cavity usually functions as a dual-axis angular rate sensor. An inherent coupling error between the two sensing axes exists owing to the angular motion of the spinning rotor being controlled by a torque-rebalance loop. In this paper, a decoupling compensation method is proposed and investigated experimentally based on an electrostatically suspended micromachined gyroscope. In order to eliminate the negative spring effect inherent in the gyroscope dynamics, a stiffness compensation scheme was utilized in design of the decoupled rebalance loop to ensure loop stability and increase suspension stiffness. The experimental results show an overall stiffness increase of 30.3% after compensation. A decoupling method comprised of inner- and outer-loop decoupling compensators is proposed to minimize the cross-axis coupling error. The inner-loop decoupling compensator aims to attenuate the angular position coupling. The experimental frequency response shows a position coupling attenuation by 14.36 dB at 1 Hz. Moreover, the cross-axis coupling between the two angular rate output signals can be attenuated theoretically from −56.2 dB down to −102 dB by further appending the outer-loop decoupling compensator. The proposed dual-loop decoupling compensation algorithm could be applied to other dual-axis spinning-rotor gyroscopes with various suspension solutions.