Cargando…

Therapeutic Potential of Transcranial Focused Ultrasound for Rett Syndrome

Rett syndrome (RTT) is a severe neurodevelopmental disorder occurring almost exclusively in females and is caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2) in the majority of cases. MeCP2 is essential for the normal function of nerve cells, including neu...

Descripción completa

Detalles Bibliográficos
Autor principal: Tsai, Shih-Jen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087669/
https://www.ncbi.nlm.nih.gov/pubmed/27786169
http://dx.doi.org/10.12659/MSM.898041
Descripción
Sumario:Rett syndrome (RTT) is a severe neurodevelopmental disorder occurring almost exclusively in females and is caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2) in the majority of cases. MeCP2 is essential for the normal function of nerve cells, including neuronal development, maturation, and synaptic activity. RTT is characterized by normal early development followed by autistic-like features, slowed brain and head growth, gait abnormalities, seizures, breathing irregularities, and cognitive disabilities. Medical management in RTT remains supportive and symptomatic. Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of RTT. Recent studies have shown a phenotypic reversal by increasing BDNF expression in a RTT mouse model. Thus, manipulation of BDNF expression/signaling in the brain could be therapeutic for this disease. Transcranial focused ultrasound for (tFUS) can noninvasively focally modulate human cortical function, stimulate neurogenesis, and increase BDNF in animal studies. Consequently, tFUS may be of therapeutic potential for Rett syndrome. Further evaluation of the therapeutic effects of tFUS in Mecp2 deficient animal models is needed before clinical trials can begin.