Cargando…
Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats
‘Developmental programming’, which occurs as a consequence of suboptimal in utero and early environments, can be associated with metabolic dysfunction in later life, including an increased incidence of cardiovascular disease and type 2 diabetes, and predisposition of older men to sarcopenia. However...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087829/ https://www.ncbi.nlm.nih.gov/pubmed/27585884 http://dx.doi.org/10.1242/dmm.026591 |
_version_ | 1782463978393305088 |
---|---|
author | Tarry-Adkins, Jane L. Fernandez-Twinn, Denise S. Chen, Jian Hua Hargreaves, Iain P. Neergheen, Viruna Aiken, Catherine E. Ozanne, Susan E. |
author_facet | Tarry-Adkins, Jane L. Fernandez-Twinn, Denise S. Chen, Jian Hua Hargreaves, Iain P. Neergheen, Viruna Aiken, Catherine E. Ozanne, Susan E. |
author_sort | Tarry-Adkins, Jane L. |
collection | PubMed |
description | ‘Developmental programming’, which occurs as a consequence of suboptimal in utero and early environments, can be associated with metabolic dysfunction in later life, including an increased incidence of cardiovascular disease and type 2 diabetes, and predisposition of older men to sarcopenia. However, the molecular mechanisms underpinning these associations are poorly understood. Many conditions associated with developmental programming are also known to be associated with the aging process. We therefore utilized our well-established rat model of low birth weight and accelerated postnatal catch-up growth (termed ‘recuperated’) in this study to establish the effects of suboptimal maternal nutrition on age-associated factors in skeletal muscle. We demonstrated accelerated telomere shortening (a robust marker of cellular aging) as evidenced by a reduced frequency of long telomeres (48.5-8.6 kb) and an increased frequency of short telomeres (4.2-1.3 kb) in vastus lateralis muscle from aged recuperated offspring compared to controls. This was associated with increased protein expression of the DNA-damage-repair marker 8-oxoguanine-glycosylase (OGG1) in recuperated offspring. Recuperated animals also demonstrated an oxidative stress phenotype, with decreased citrate synthase activity, increased electron-transport-complex activities of complex I, complex II-III and complex IV (all markers of functional mitochondria), and increased xanthine oxidase (XO), p67(phox) and nuclear-factor kappa-light-chain-enhancer of activated B-cells (NF-κB). Recuperated offspring also demonstrated increased antioxidant defense capacity, with increased protein expression of manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), catalase and heme oxygenase-1 (HO1), all of which are known targets of NF-κB and can be upregulated as a consequence of oxidative stress. Recuperated offspring also had a pro-inflammatory phenotype, as evidenced by increased tumor necrosis factor-α (TNFα) and interleukin-1β (IL1β) protein levels. Taken together, we demonstrate, for the first time to our knowledge, an accelerated aging phenotype in skeletal muscle in the context of developmental programming. These findings may pave the way for suitable interventions in at-risk populations. |
format | Online Article Text |
id | pubmed-5087829 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | The Company of Biologists Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-50878292016-10-31 Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats Tarry-Adkins, Jane L. Fernandez-Twinn, Denise S. Chen, Jian Hua Hargreaves, Iain P. Neergheen, Viruna Aiken, Catherine E. Ozanne, Susan E. Dis Model Mech Research Article ‘Developmental programming’, which occurs as a consequence of suboptimal in utero and early environments, can be associated with metabolic dysfunction in later life, including an increased incidence of cardiovascular disease and type 2 diabetes, and predisposition of older men to sarcopenia. However, the molecular mechanisms underpinning these associations are poorly understood. Many conditions associated with developmental programming are also known to be associated with the aging process. We therefore utilized our well-established rat model of low birth weight and accelerated postnatal catch-up growth (termed ‘recuperated’) in this study to establish the effects of suboptimal maternal nutrition on age-associated factors in skeletal muscle. We demonstrated accelerated telomere shortening (a robust marker of cellular aging) as evidenced by a reduced frequency of long telomeres (48.5-8.6 kb) and an increased frequency of short telomeres (4.2-1.3 kb) in vastus lateralis muscle from aged recuperated offspring compared to controls. This was associated with increased protein expression of the DNA-damage-repair marker 8-oxoguanine-glycosylase (OGG1) in recuperated offspring. Recuperated animals also demonstrated an oxidative stress phenotype, with decreased citrate synthase activity, increased electron-transport-complex activities of complex I, complex II-III and complex IV (all markers of functional mitochondria), and increased xanthine oxidase (XO), p67(phox) and nuclear-factor kappa-light-chain-enhancer of activated B-cells (NF-κB). Recuperated offspring also demonstrated increased antioxidant defense capacity, with increased protein expression of manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), catalase and heme oxygenase-1 (HO1), all of which are known targets of NF-κB and can be upregulated as a consequence of oxidative stress. Recuperated offspring also had a pro-inflammatory phenotype, as evidenced by increased tumor necrosis factor-α (TNFα) and interleukin-1β (IL1β) protein levels. Taken together, we demonstrate, for the first time to our knowledge, an accelerated aging phenotype in skeletal muscle in the context of developmental programming. These findings may pave the way for suitable interventions in at-risk populations. The Company of Biologists Ltd 2016-10-01 /pmc/articles/PMC5087829/ /pubmed/27585884 http://dx.doi.org/10.1242/dmm.026591 Text en © 2016. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Research Article Tarry-Adkins, Jane L. Fernandez-Twinn, Denise S. Chen, Jian Hua Hargreaves, Iain P. Neergheen, Viruna Aiken, Catherine E. Ozanne, Susan E. Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats |
title | Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats |
title_full | Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats |
title_fullStr | Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats |
title_full_unstemmed | Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats |
title_short | Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats |
title_sort | poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087829/ https://www.ncbi.nlm.nih.gov/pubmed/27585884 http://dx.doi.org/10.1242/dmm.026591 |
work_keys_str_mv | AT tarryadkinsjanel poormaternalnutritionandacceleratedpostnatalgrowthinducesanacceleratedagingphenotypeandoxidativestressinskeletalmuscleofmalerats AT fernandeztwinndenises poormaternalnutritionandacceleratedpostnatalgrowthinducesanacceleratedagingphenotypeandoxidativestressinskeletalmuscleofmalerats AT chenjianhua poormaternalnutritionandacceleratedpostnatalgrowthinducesanacceleratedagingphenotypeandoxidativestressinskeletalmuscleofmalerats AT hargreavesiainp poormaternalnutritionandacceleratedpostnatalgrowthinducesanacceleratedagingphenotypeandoxidativestressinskeletalmuscleofmalerats AT neergheenviruna poormaternalnutritionandacceleratedpostnatalgrowthinducesanacceleratedagingphenotypeandoxidativestressinskeletalmuscleofmalerats AT aikencatherinee poormaternalnutritionandacceleratedpostnatalgrowthinducesanacceleratedagingphenotypeandoxidativestressinskeletalmuscleofmalerats AT ozannesusane poormaternalnutritionandacceleratedpostnatalgrowthinducesanacceleratedagingphenotypeandoxidativestressinskeletalmuscleofmalerats |