Cargando…

Isoxazole‐Derived Amino Acids are Bromodomain‐Binding Acetyl‐Lysine Mimics: Incorporation into Histone H4 Peptides and Histone H3

A range of isoxazole‐containing amino acids was synthesized that displaced acetyl‐lysine‐containing peptides from the BAZ2A, BRD4(1), and BRD9 bromodomains. Three of these amino acids were incorporated into a histone H4‐mimicking peptide and their affinity for BRD4(1) was assessed. Affinities of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Sekirnik (née Measures), Angelina R., Hewings, David S., Theodoulou, Natalie H., Jursins, Lukass, Lewendon, Katie R., Jennings, Laura E., Rooney, Timothy P. C., Heightman, Tom D., Conway, Stuart J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5089653/
https://www.ncbi.nlm.nih.gov/pubmed/27264992
http://dx.doi.org/10.1002/anie.201602908
Descripción
Sumario:A range of isoxazole‐containing amino acids was synthesized that displaced acetyl‐lysine‐containing peptides from the BAZ2A, BRD4(1), and BRD9 bromodomains. Three of these amino acids were incorporated into a histone H4‐mimicking peptide and their affinity for BRD4(1) was assessed. Affinities of the isoxazole‐containing peptides are comparable to those of a hyperacetylated histone H4‐mimicking cognate peptide, and demonstrated a dependence on the position at which the unnatural residue was incorporated. An isoxazole‐based alkylating agent was developed to selectively alkylate cysteine residues in situ. Selective monoalkylation of a histone H4‐mimicking peptide, containing a lysine to cysteine residue substitution (K12C), resulted in acetyl‐lysine mimic incorporation, with high affinity for the BRD4 bromodomain. The same technology was used to alkylate a K18C mutant of histone H3.