Cargando…

A Bioinformatics Approach for Detecting Repetitive Nested Motifs using Pattern Matching

The identification of nested motifs in genomic sequences is a complex computational problem. The detection of these patterns is important to allow the discovery of transposable element (TE) insertions, incomplete reverse transcripts, deletions, and/or mutations. In this study, a de novo strategy for...

Descripción completa

Detalles Bibliográficos
Autores principales: Romero, José R., Carballido, Jessica A., Garbus, Ingrid, Echenique, Viviana C., Ponzoni, Ignacio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Libertas Academica 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5089818/
https://www.ncbi.nlm.nih.gov/pubmed/27812277
http://dx.doi.org/10.4137/EBO.S40138
_version_ 1782464300888096768
author Romero, José R.
Carballido, Jessica A.
Garbus, Ingrid
Echenique, Viviana C.
Ponzoni, Ignacio
author_facet Romero, José R.
Carballido, Jessica A.
Garbus, Ingrid
Echenique, Viviana C.
Ponzoni, Ignacio
author_sort Romero, José R.
collection PubMed
description The identification of nested motifs in genomic sequences is a complex computational problem. The detection of these patterns is important to allow the discovery of transposable element (TE) insertions, incomplete reverse transcripts, deletions, and/or mutations. In this study, a de novo strategy for detecting patterns that represent nested motifs was designed based on exhaustive searches for pairs of motifs and combinatorial pattern analysis. These patterns can be grouped into three categories, motifs within other motifs, motifs flanked by other motifs, and motifs of large size. The methodology used in this study, applied to genomic sequences from the plant species Aegilops tauschii and Oryza sativa, revealed that it is possible to identify putative nested TEs by detecting these three types of patterns. The results were validated through BLAST alignments, which revealed the efficacy and usefulness of the new method, which is called Mamushka.
format Online
Article
Text
id pubmed-5089818
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Libertas Academica
record_format MEDLINE/PubMed
spelling pubmed-50898182016-11-03 A Bioinformatics Approach for Detecting Repetitive Nested Motifs using Pattern Matching Romero, José R. Carballido, Jessica A. Garbus, Ingrid Echenique, Viviana C. Ponzoni, Ignacio Evol Bioinform Online Original Research The identification of nested motifs in genomic sequences is a complex computational problem. The detection of these patterns is important to allow the discovery of transposable element (TE) insertions, incomplete reverse transcripts, deletions, and/or mutations. In this study, a de novo strategy for detecting patterns that represent nested motifs was designed based on exhaustive searches for pairs of motifs and combinatorial pattern analysis. These patterns can be grouped into three categories, motifs within other motifs, motifs flanked by other motifs, and motifs of large size. The methodology used in this study, applied to genomic sequences from the plant species Aegilops tauschii and Oryza sativa, revealed that it is possible to identify putative nested TEs by detecting these three types of patterns. The results were validated through BLAST alignments, which revealed the efficacy and usefulness of the new method, which is called Mamushka. Libertas Academica 2016-10-30 /pmc/articles/PMC5089818/ /pubmed/27812277 http://dx.doi.org/10.4137/EBO.S40138 Text en © 2016 the author(s), publisher and licensee Libertas Academica Ltd. This is an open-access article distributed under the terms of the Creative Commons CC-BY-NC 3.0 License.
spellingShingle Original Research
Romero, José R.
Carballido, Jessica A.
Garbus, Ingrid
Echenique, Viviana C.
Ponzoni, Ignacio
A Bioinformatics Approach for Detecting Repetitive Nested Motifs using Pattern Matching
title A Bioinformatics Approach for Detecting Repetitive Nested Motifs using Pattern Matching
title_full A Bioinformatics Approach for Detecting Repetitive Nested Motifs using Pattern Matching
title_fullStr A Bioinformatics Approach for Detecting Repetitive Nested Motifs using Pattern Matching
title_full_unstemmed A Bioinformatics Approach for Detecting Repetitive Nested Motifs using Pattern Matching
title_short A Bioinformatics Approach for Detecting Repetitive Nested Motifs using Pattern Matching
title_sort bioinformatics approach for detecting repetitive nested motifs using pattern matching
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5089818/
https://www.ncbi.nlm.nih.gov/pubmed/27812277
http://dx.doi.org/10.4137/EBO.S40138
work_keys_str_mv AT romerojoser abioinformaticsapproachfordetectingrepetitivenestedmotifsusingpatternmatching
AT carballidojessicaa abioinformaticsapproachfordetectingrepetitivenestedmotifsusingpatternmatching
AT garbusingrid abioinformaticsapproachfordetectingrepetitivenestedmotifsusingpatternmatching
AT echeniquevivianac abioinformaticsapproachfordetectingrepetitivenestedmotifsusingpatternmatching
AT ponzoniignacio abioinformaticsapproachfordetectingrepetitivenestedmotifsusingpatternmatching
AT romerojoser bioinformaticsapproachfordetectingrepetitivenestedmotifsusingpatternmatching
AT carballidojessicaa bioinformaticsapproachfordetectingrepetitivenestedmotifsusingpatternmatching
AT garbusingrid bioinformaticsapproachfordetectingrepetitivenestedmotifsusingpatternmatching
AT echeniquevivianac bioinformaticsapproachfordetectingrepetitivenestedmotifsusingpatternmatching
AT ponzoniignacio bioinformaticsapproachfordetectingrepetitivenestedmotifsusingpatternmatching