Cargando…
Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm
Biological macromolecules function in highly crowded cellular environments. The structure and dynamics of proteins and nucleic acids are well characterized in vitro, but in vivo crowding effects remain unclear. Using molecular dynamics simulations of a comprehensive atomistic model cytoplasm we foun...
Autores principales: | Yu, Isseki, Mori, Takaharu, Ando, Tadashi, Harada, Ryuhei, Jung, Jaewoon, Sugita, Yuji, Feig, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5089862/ https://www.ncbi.nlm.nih.gov/pubmed/27801646 http://dx.doi.org/10.7554/eLife.19274 |
Ejemplares similares
-
GENESIS: a hybrid-parallel and multi-scale molecular dynamics simulator with enhanced sampling algorithms for biomolecular and cellular simulations
por: Jung, Jaewoon, et al.
Publicado: (2015) -
Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling
por: Briegel, Ariane, et al.
Publicado: (2014) -
Crowding in Cellular Environments at an Atomistic
Level from Computer Simulations
por: Feig, Michael, et al.
Publicado: (2017) -
Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta
por: Wang, Ray Yu-Ruei, et al.
Publicado: (2016) -
Atomistic simulations indicate the c-subunit ring of the F(1)F(o) ATP synthase is not the mitochondrial permeability transition pore
por: Zhou, Wenchang, et al.
Publicado: (2017)