Cargando…

A conceptual view at microtubule plus end dynamics in neuronal axons

Axons are the cable-like protrusions of neurons which wire up the nervous system. Polar bundles of microtubules (MTs) constitute their structural backbones and are highways for life-sustaining transport between proximal cell bodies and distal synapses. Any morphogenetic changes of axons during devel...

Descripción completa

Detalles Bibliográficos
Autores principales: Voelzmann, André, Hahn, Ines, Pearce, Simon P., Sánchez-Soriano, Natalia, Prokop, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090033/
https://www.ncbi.nlm.nih.gov/pubmed/27530065
http://dx.doi.org/10.1016/j.brainresbull.2016.08.006
Descripción
Sumario:Axons are the cable-like protrusions of neurons which wire up the nervous system. Polar bundles of microtubules (MTs) constitute their structural backbones and are highways for life-sustaining transport between proximal cell bodies and distal synapses. Any morphogenetic changes of axons during development, plastic rearrangement, regeneration or degeneration depend on dynamic changes of these MT bundles. A key mechanism for implementing such changes is the coordinated polymerisation and depolymerisation at the plus ends of MTs within these bundles. To gain an understanding of how such regulation can be achieved at the cellular level, we provide here an integrated overview of the extensive knowledge we have about the molecular mechanisms regulating MT de/polymerisation. We first summarise insights gained from work in vitro, then describe the machinery which supplies the essential tubulin building blocks, the protein complexes associating with MT plus ends, and MT shaft-based mechanisms that influence plus end dynamics. We briefly summarise the contribution of MT plus end dynamics to important cellular functions in axons, and conclude by discussing the challenges and potential strategies of integrating the existing molecular knowledge into conceptual understanding at the level of axons.