Cargando…
ADMM-EM Method for L (1)-Norm Regularized Weighted Least Squares PET Reconstruction
The L (1)-norm regularization is usually used in positron emission tomography (PET) reconstruction to suppress noise artifacts while preserving edges. The alternating direction method of multipliers (ADMM) is proven to be effective for solving this problem. It sequentially updates the additional var...
Autores principales: | Teng, Yueyang, Sun, Hang, Guo, Chen, Kang, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090129/ https://www.ncbi.nlm.nih.gov/pubmed/27840655 http://dx.doi.org/10.1155/2016/6458289 |
Ejemplares similares
-
The symmetric ADMM with indefinite proximal regularization and its application
por: Sun, Hongchun, et al.
Publicado: (2017) -
Kinase Identification with Supervised Laplacian Regularized Least Squares
por: Li, Ao, et al.
Publicado: (2015) -
A nonconvex [Formula: see text] regularization model and the ADMM based algorithm
por: Fang, Zhuang, et al.
Publicado: (2022) -
Low-dose CT reconstruction via L1 dictionary learning regularization using iteratively reweighted least-squares
por: Zhang, Cheng, et al.
Publicado: (2016) -
Consistent Partial Least Squares Path Modeling via Regularization
por: Jung, Sunho, et al.
Publicado: (2018)