Cargando…
Graph-based iterative Group Analysis enhances microarray interpretation
BACKGROUND: One of the most time-consuming tasks after performing a gene expression experiment is the biological interpretation of the results by identifying physiologically important associations between the differentially expressed genes. A large part of the relevant functional evidence can be rep...
Autores principales: | Breitling, Rainer, Amtmann, Anna, Herzyk, Pawel |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC509016/ https://www.ncbi.nlm.nih.gov/pubmed/15272936 http://dx.doi.org/10.1186/1471-2105-5-100 |
Ejemplares similares
-
Iterative Group Analysis (iGA): A simple tool to enhance sensitivity and facilitate interpretation of microarray experiments
por: Breitling, Rainer, et al.
Publicado: (2004) -
Vector analysis as a fast and easy method to compare gene expression responses between different experimental backgrounds
por: Breitling, Rainer, et al.
Publicado: (2005) -
Iterative rank-order normalization of gene expression microarray data
por: Welsh, Eric A, et al.
Publicado: (2013) -
A balanced iterative random forest for gene selection from microarray data
por: Anaissi, Ali, et al.
Publicado: (2013) -
Iterative Bayesian Model Averaging: a method for the application of survival analysis to high-dimensional microarray data
por: Annest, Amalia, et al.
Publicado: (2009)