Cargando…

Nanobiomaterials for neural regeneration

Diseases and disorders associated with nervous system such as injuries by trauma and neurodegeneration are shown to be one of the most serious problems in medicine, requiring innovative strategies to trigger and enhance the nerve regeneration. Tissue engineering aims to provide a highly biomimetic e...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Nuan, Tian, Lingling, He, Liumin, Ramakrishna, Seeram
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090823/
https://www.ncbi.nlm.nih.gov/pubmed/27857724
http://dx.doi.org/10.4103/1673-5374.191195
Descripción
Sumario:Diseases and disorders associated with nervous system such as injuries by trauma and neurodegeneration are shown to be one of the most serious problems in medicine, requiring innovative strategies to trigger and enhance the nerve regeneration. Tissue engineering aims to provide a highly biomimetic environment by using a combination of cells, materials and suitable biological cues, by which the lost body part may be regenerated or even fully rebuilt. Electrospinning, being able to produce extracellular matrix (ECM)-like nanostructures with great flexibility in design and choice of materials, have demonstrated their great potential for fabrication of nerve tissue engineered scaffolds. The review here begins with a brief description of the anatomy of native nervous system, which provides basic knowledge and ideas for the design of nerve tissue scaffolds, followed by five main parts in the design of electrospun nerve tissue engineered scaffolds including materials selection, structural design, in vitro bioreactor, functionalization and cellular support. Performances of biomimetic electrospun nanofibrous nerve implant devices are also reviewed. Finally, future directions for advanced electrospun nerve tissue engineered scaffolds are discussed.