Cargando…
NERChem: adapting NERBio to chemical patents via full-token features and named entity feature with chemical sub-class composition
Chemical patents contain detailed information on novel chemical compounds that is valuable to the chemical and pharmaceutical industries. In this paper, we introduce a system, NERChem that can recognize chemical named entity mentions in chemical patents. NERChem is based on the conditional random fi...
Autores principales: | Tsai, Richard Tzong-Han, Hsiao, Yu-Cheng, Lai, Po-Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5091336/ https://www.ncbi.nlm.nih.gov/pubmed/31414701 http://dx.doi.org/10.1093/database/baw135 |
Ejemplares similares
-
NERBio: using selected word conjunctions, term normalization, and global patterns to improve biomedical named entity recognition
por: Tsai, Richard Tzong-Han, et al.
Publicado: (2006) -
Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning
por: Zhang, Yaoyun, et al.
Publicado: (2016) -
ChemTok: A New Rule Based Tokenizer for Chemical Named Entity Recognition
por: Akkasi, Abbas, et al.
Publicado: (2016) -
Enhancing of chemical compound and drug name recognition using representative tag scheme and fine-grained tokenization
por: Dai, Hong-Jie, et al.
Publicado: (2015) -
ChEMU: Named Entity Recognition and Event Extraction of Chemical Reactions from Patents
por: Nguyen, Dat Quoc, et al.
Publicado: (2020)