Cargando…
Understanding how animal groups achieve coordinated movement
Moving animal groups display remarkable feats of coordination. This coordination is largely achieved when individuals adjust their movement in response to their neighbours' movements and positions. Recent advancements in automated tracking technologies, including computer vision and GPS, now al...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5091654/ https://www.ncbi.nlm.nih.gov/pubmed/27707862 http://dx.doi.org/10.1242/jeb.129411 |
_version_ | 1782464622302855168 |
---|---|
author | Herbert-Read, J. E. |
author_facet | Herbert-Read, J. E. |
author_sort | Herbert-Read, J. E. |
collection | PubMed |
description | Moving animal groups display remarkable feats of coordination. This coordination is largely achieved when individuals adjust their movement in response to their neighbours' movements and positions. Recent advancements in automated tracking technologies, including computer vision and GPS, now allow researchers to gather large amounts of data on the movements and positions of individuals in groups. Furthermore, analytical techniques from fields such as statistical physics now allow us to identify the precise interaction rules used by animals on the move. These interaction rules differ not only between species, but also between individuals in the same group. These differences have wide-ranging implications, affecting how groups make collective decisions and driving the evolution of collective motion. Here, I describe how trajectory data can be used to infer how animals interact in moving groups. I give examples of the similarities and differences in the spatial and directional organisations of animal groups between species, and discuss the rules that animals use to achieve this organisation. I then explore how groups of the same species can exhibit different structures, and ask whether this results from individuals adapting their interaction rules. I then examine how the interaction rules between individuals in the same groups can also differ, and discuss how this can affect ecological and evolutionary processes. Finally, I suggest areas of future research. |
format | Online Article Text |
id | pubmed-5091654 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | The Company of Biologists Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-50916542016-11-18 Understanding how animal groups achieve coordinated movement Herbert-Read, J. E. J Exp Biol Review Moving animal groups display remarkable feats of coordination. This coordination is largely achieved when individuals adjust their movement in response to their neighbours' movements and positions. Recent advancements in automated tracking technologies, including computer vision and GPS, now allow researchers to gather large amounts of data on the movements and positions of individuals in groups. Furthermore, analytical techniques from fields such as statistical physics now allow us to identify the precise interaction rules used by animals on the move. These interaction rules differ not only between species, but also between individuals in the same group. These differences have wide-ranging implications, affecting how groups make collective decisions and driving the evolution of collective motion. Here, I describe how trajectory data can be used to infer how animals interact in moving groups. I give examples of the similarities and differences in the spatial and directional organisations of animal groups between species, and discuss the rules that animals use to achieve this organisation. I then explore how groups of the same species can exhibit different structures, and ask whether this results from individuals adapting their interaction rules. I then examine how the interaction rules between individuals in the same groups can also differ, and discuss how this can affect ecological and evolutionary processes. Finally, I suggest areas of future research. The Company of Biologists Ltd 2016-10-01 /pmc/articles/PMC5091654/ /pubmed/27707862 http://dx.doi.org/10.1242/jeb.129411 Text en © 2016. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Review Herbert-Read, J. E. Understanding how animal groups achieve coordinated movement |
title | Understanding how animal groups achieve coordinated movement |
title_full | Understanding how animal groups achieve coordinated movement |
title_fullStr | Understanding how animal groups achieve coordinated movement |
title_full_unstemmed | Understanding how animal groups achieve coordinated movement |
title_short | Understanding how animal groups achieve coordinated movement |
title_sort | understanding how animal groups achieve coordinated movement |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5091654/ https://www.ncbi.nlm.nih.gov/pubmed/27707862 http://dx.doi.org/10.1242/jeb.129411 |
work_keys_str_mv | AT herbertreadje understandinghowanimalgroupsachievecoordinatedmovement |