Cargando…

Phosphodiesterase Inhibition and Regulation of Dopaminergic Frontal and Striatal Functioning: Clinical Implications

BACKGROUND: The fronto-striatal circuits are the common neurobiological basis for neuropsychiatric disorders, including schizophrenia, Parkinson’s disease, Huntington’s disease, attention deficit hyperactivity disorder, obsessive-compulsive disorder, and Tourette’s syndrome. Fronto-striatal circuits...

Descripción completa

Detalles Bibliográficos
Autores principales: Heckman, Pim R. A., van Duinen, Marlies A., Bollen, Eva P. P., Nishi, Akinori, Wennogle, Lawrence P., Blokland, Arjan, Prickaerts, Jos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5091819/
https://www.ncbi.nlm.nih.gov/pubmed/27037577
http://dx.doi.org/10.1093/ijnp/pyw030
Descripción
Sumario:BACKGROUND: The fronto-striatal circuits are the common neurobiological basis for neuropsychiatric disorders, including schizophrenia, Parkinson’s disease, Huntington’s disease, attention deficit hyperactivity disorder, obsessive-compulsive disorder, and Tourette’s syndrome. Fronto-striatal circuits consist of motor circuits, associative circuits, and limbic circuits. All circuits share 2 common features. First, all fronto-striatal circuits consist of hyper direct, direct, and indirect pathways. Second, all fronto-striatal circuits are modulated by dopamine. Intracellularly, the effect of dopamine is largely mediated through the cyclic adenosine monophosphate/protein kinase A signaling cascade with an additional role for the cyclic guanosine monophosphate/protein kinase G pathway, both of which can be regulated by phosphodiesterases. Phosphodiesterases are thus a potential target for pharmacological intervention in neuropsychiatric disorders related to dopaminergic regulation of fronto-striatal circuits. METHODS: Clinical studies of the effects of different phosphodiesterase inhibitors on cognition, affect, and motor function in relation to the fronto-striatal circuits are reviewed. RESULTS: Several selective phosphodiesterase inhibitors have positive effects on cognition, affect, and motor function in relation to the fronto-striatal circuits. CONCLUSION: Increased understanding of the subcellular localization and unraveling of the signalosome concept of phosphodiesterases including its function and dysfunction in the fronto-striatal circuits will contribute to the design of new specific inhibitors and enhance the potential of phosphodiesterase inhibitors as therapeutics in fronto-striatal circuits.