Cargando…
The effects of aluminium on plant growth in a temperate and deciduous aluminium accumulating species
Aluminium (Al) is a phytotoxic element affecting the growth and yield of many crop plants, especially in the tropics. Yet, some plants are able to accumulate high levels of Al. The monogeneric family Symplocaceae represents an Al accumulating family including many tropical and evergreen species with...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5091896/ https://www.ncbi.nlm.nih.gov/pubmed/27613876 http://dx.doi.org/10.1093/aobpla/plw065 |
Sumario: | Aluminium (Al) is a phytotoxic element affecting the growth and yield of many crop plants, especially in the tropics. Yet, some plants are able to accumulate high levels of Al. The monogeneric family Symplocaceae represents an Al accumulating family including many tropical and evergreen species with high Al levels in their above ground plant tissues. It is unclear, however, whether Al accumulation also characterises temperate species of Symplocos, and whether or not the uptake has a beneficial growth effect. Here, we investigate if the temperate, deciduous species Symplocos paniculata is able to accumulate Al by growing seedlings and saplings in a hydroponic setup at pH 4 with and without Al. Pyrocatechol-violet (PCV) and aluminon staining was performed to visualize Al accumulation in various plant tissues. Both seedlings and saplings accumulate Al in their tissues if available. Mean Al levels in leaves were 4107 (±1474 mg kg(−1)) and 4290 (±4025 mg kg(−1)) for the seedlings and saplings, respectively. The saplings treated without Al showed a high mortality rate unlike the Al accumulating ones. The seedlings, however, showed no difference in growth and vitality between the two treatments. The saplings treated with Al showed new twig, leaf and root development, resulting in a considerable biomass increase. PCV and aluminon staining indicated the presence of Al in leaf, wood and bark tissue of the plants. S. paniculata shares the capacity to accumulate Al with its tropical sister species and is suggested to be a facultative accumulator. Whether or not Al has a beneficial effect remains unclear, due to developmental differences between seedlings and saplings. Al is suggested to be transported via the xylem transport system into the leaves, which show the highest Al levels. Radial transport via ray parenchyma to bark tissue is also likely given the high Al concentrations in the bark tissue. |
---|