Cargando…
8-Cl-Adenosine enhances 1,25-dihydroxyvitamin D(3)-induced growth inhibition without affecting 1,25-dihydroxyvitamin D(3)-stimulated differentiation of primary mouse epidermal keratinocytes
BACKGROUND: Epidermal keratinocytes continuously proliferate and differentiate to form the mechanical and water permeability barrier that makes terrestrial life possible. In certain skin diseases, these processes become dysregulated, resulting in abnormal barrier formation. In particular, skin disea...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC509244/ https://www.ncbi.nlm.nih.gov/pubmed/15279680 http://dx.doi.org/10.1186/1471-2210-4-13 |
Sumario: | BACKGROUND: Epidermal keratinocytes continuously proliferate and differentiate to form the mechanical and water permeability barrier that makes terrestrial life possible. In certain skin diseases, these processes become dysregulated, resulting in abnormal barrier formation. In particular, skin diseases such as psoriasis, actinic keratosis and basal and squamous cell carcinomas are characterized by hyperproliferation and aberrant or absent differentiation of epidermal keratinocytes. We previously demonstrated that 8-Cl-adenosine (8-Cl-Ado) can induce keratinocyte growth arrest without inducing differentiation. RESULTS: To determine if this agent might be useful in treating hyperproliferative skin disorders, we investigated whether 8-Cl-Ado could enhance the ability of 1,25-dihydroxyvitamin D(3 )[1,25(OH)(2)D(3)], a known keratinocyte differentiating agent and a clinical treatment for psoriasis, to inhibit keratinocyte growth. We found that low concentrations of 8-Cl-Ado and 1,25(OH)(2)D(3 )appeared to act additively to reduce proliferation of primary mouse epidermal keratinocytes. However, another agent (transforming growth factor-beta) that triggers growth arrest without inducing differentiation also coincidentally inhibits differentiation elicited by other agents; inhibition of differentiation is suboptimal for treating skin disorders, as differentiation is often already reduced. Thus, we determined whether 8-Cl-Ado also decreased keratinocyte differentiation induced by 1,25(OH)(2)D(3), as measured using the early and late differentiation markers, keratin 1 protein levels and transglutaminase activity, respectively. 8-Cl-Ado did not affect 1,25(OH)(2)D(3)-stimulated keratin 1 protein expression or transglutaminase activity. CONCLUSIONS: Our results suggest that 8-Cl-Ado might be useful in combination with differentiating agents for the treatment of hyperproliferative disorders of the skin. |
---|