Cargando…
Magnetohydrodynamics flow of a nanofluid driven by a stretching/shrinking sheet with suction
The present paper investigates the effect of a mathematical model describing the aforementioned process in which the ambient nanofluid in the presence of suction/injection and magnetic field are taken into consideration. The flow is induced by an infinite elastic sheet which is stretched along its o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5093110/ https://www.ncbi.nlm.nih.gov/pubmed/27867808 http://dx.doi.org/10.1186/s40064-016-3588-0 |
_version_ | 1782464847337750528 |
---|---|
author | Mahabaleshwar, U. S. Vinay Kumar, P. N. Sheremet, Mikhail |
author_facet | Mahabaleshwar, U. S. Vinay Kumar, P. N. Sheremet, Mikhail |
author_sort | Mahabaleshwar, U. S. |
collection | PubMed |
description | The present paper investigates the effect of a mathematical model describing the aforementioned process in which the ambient nanofluid in the presence of suction/injection and magnetic field are taken into consideration. The flow is induced by an infinite elastic sheet which is stretched along its own plane. The stretching/shrinking of the sheet is assumed to be proportional to the distance from the slit. The governing equations are reduced to a nonlinear ordinary differential equation by means of similarity transformation. The consequential nonlinear equation is solved analytically. Consequences show that the flow field can be divided into a near-field region and a far-field region. Suction on the surface plays an important role in the flow development in the near-field whereas the far-field is responsible mainly by stretching. The electromagnetic effect plays exactly the same role as the MHD, which is to reduce the horizontal flow resulting from stretching. It is shown that the behavior of the fluid flow changes with the change of the nanoparticles type. The present study throws light on the analytical solution of a class of laminar boundary layer equations arising in the stretching/shrinking sheet problem. |
format | Online Article Text |
id | pubmed-5093110 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-50931102016-11-18 Magnetohydrodynamics flow of a nanofluid driven by a stretching/shrinking sheet with suction Mahabaleshwar, U. S. Vinay Kumar, P. N. Sheremet, Mikhail Springerplus Research The present paper investigates the effect of a mathematical model describing the aforementioned process in which the ambient nanofluid in the presence of suction/injection and magnetic field are taken into consideration. The flow is induced by an infinite elastic sheet which is stretched along its own plane. The stretching/shrinking of the sheet is assumed to be proportional to the distance from the slit. The governing equations are reduced to a nonlinear ordinary differential equation by means of similarity transformation. The consequential nonlinear equation is solved analytically. Consequences show that the flow field can be divided into a near-field region and a far-field region. Suction on the surface plays an important role in the flow development in the near-field whereas the far-field is responsible mainly by stretching. The electromagnetic effect plays exactly the same role as the MHD, which is to reduce the horizontal flow resulting from stretching. It is shown that the behavior of the fluid flow changes with the change of the nanoparticles type. The present study throws light on the analytical solution of a class of laminar boundary layer equations arising in the stretching/shrinking sheet problem. Springer International Publishing 2016-11-02 /pmc/articles/PMC5093110/ /pubmed/27867808 http://dx.doi.org/10.1186/s40064-016-3588-0 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Mahabaleshwar, U. S. Vinay Kumar, P. N. Sheremet, Mikhail Magnetohydrodynamics flow of a nanofluid driven by a stretching/shrinking sheet with suction |
title | Magnetohydrodynamics flow of a nanofluid driven by a stretching/shrinking sheet with suction |
title_full | Magnetohydrodynamics flow of a nanofluid driven by a stretching/shrinking sheet with suction |
title_fullStr | Magnetohydrodynamics flow of a nanofluid driven by a stretching/shrinking sheet with suction |
title_full_unstemmed | Magnetohydrodynamics flow of a nanofluid driven by a stretching/shrinking sheet with suction |
title_short | Magnetohydrodynamics flow of a nanofluid driven by a stretching/shrinking sheet with suction |
title_sort | magnetohydrodynamics flow of a nanofluid driven by a stretching/shrinking sheet with suction |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5093110/ https://www.ncbi.nlm.nih.gov/pubmed/27867808 http://dx.doi.org/10.1186/s40064-016-3588-0 |
work_keys_str_mv | AT mahabaleshwarus magnetohydrodynamicsflowofananofluiddrivenbyastretchingshrinkingsheetwithsuction AT vinaykumarpn magnetohydrodynamicsflowofananofluiddrivenbyastretchingshrinkingsheetwithsuction AT sheremetmikhail magnetohydrodynamicsflowofananofluiddrivenbyastretchingshrinkingsheetwithsuction |