Cargando…

Detecting structural variances of Co(3)O(4) catalysts by controlling beam-induced sample alterations in the vacuum of a transmission electron microscope

This article summarizes core aspects of beam-sample interactions in research that aims at exploiting the ability to detect single atoms at atomic resolution by mid-voltage transmission electron microscopy. Investigating the atomic structure of catalytic Co(3)O(4) nanocrystals underscores how indispe...

Descripción completa

Detalles Bibliográficos
Autores principales: Kisielowski, C., Frei, H., Specht, P., Sharp, I. D., Haber, J. A., Helveg, S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5093192/
https://www.ncbi.nlm.nih.gov/pubmed/27867836
http://dx.doi.org/10.1186/s40679-016-0027-9
Descripción
Sumario:This article summarizes core aspects of beam-sample interactions in research that aims at exploiting the ability to detect single atoms at atomic resolution by mid-voltage transmission electron microscopy. Investigating the atomic structure of catalytic Co(3)O(4) nanocrystals underscores how indispensable it is to rigorously control electron dose rates and total doses to understand native material properties on this scale. We apply in-line holography with variable dose rates to achieve this goal. Genuine object structures can be maintained if dose rates below ~100 e/Å(2)s are used and the contrast required for detection of single atoms is generated by capturing large image series. Threshold doses for the detection of single atoms are estimated. An increase of electron dose rates and total doses to common values for high resolution imaging of solids stimulates object excitations that restructure surfaces, interfaces, and defects and cause grain reorientation or growth. We observe a variety of previously unknown atom configurations in surface proximity of the Co(3)O(4) spinel structure. These are hidden behind broadened diffraction patterns in reciprocal space but become visible in real space by solving the phase problem. An exposure of the Co(3)O(4) spinel structure to water vapor or other gases induces drastic structure alterations that can be captured in this manner.