Cargando…
A network-pathway based module identification for predicting the prognosis of ovarian cancer patients
BACKGROUND: This study aimed to screen multiple genes biomarkers based on gene expression data for predicting the survival of ovarian cancer patients. METHODS: Two microarray data of ovarian cancer samples were collected from The Cancer Genome Atlas (TCGA) database. The data in the training set were...
Autores principales: | Wang, Xin, Wang, Shan-shan, Zhou, Lin, Yu, Li, Zhang, Lan-mei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5093979/ https://www.ncbi.nlm.nih.gov/pubmed/27806724 http://dx.doi.org/10.1186/s13048-016-0285-0 |
Ejemplares similares
-
Prediction of candidate RNA signatures for recurrent ovarian cancer prognosis by the construction of an integrated competing endogenous RNA network
por: Wang, Xin, et al.
Publicado: (2018) -
Systematic module approach identifies altered genes and pathways in four types of ovarian cancer
por: Liu, Jing, et al.
Publicado: (2017) -
An Ensemble Strategy to Predict Prognosis in Ovarian Cancer Based on Gene Modules
por: Gao, Yi-Cheng, et al.
Publicado: (2019) -
Identification of a Novel Model for Predicting the Prognosis and Immune Response Based on Genes Related to Cuproptosis and Ferroptosis in Ovarian Cancer
por: Li, Ying, et al.
Publicado: (2023) -
Identification of Prognosis Biomarkers for High-Grade Serous Ovarian Cancer Based on Stemness
por: Wang, Zhihang, et al.
Publicado: (2022)