Cargando…

Properties of Fixed-Fixed Models and Alternatives in Presence-Absence Data Analysis

Assessing the significance of patterns in presence-absence data is an important question in ecological data analysis, e.g., when studying nestedness. Significance testing can be performed with the commonly used fixed-fixed models, which preserve the row and column sums while permuting the data. The...

Descripción completa

Detalles Bibliográficos
Autor principal: Kallio, Aleksi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5094661/
https://www.ncbi.nlm.nih.gov/pubmed/27812126
http://dx.doi.org/10.1371/journal.pone.0165456
Descripción
Sumario:Assessing the significance of patterns in presence-absence data is an important question in ecological data analysis, e.g., when studying nestedness. Significance testing can be performed with the commonly used fixed-fixed models, which preserve the row and column sums while permuting the data. The manuscript considers the properties of fixed-fixed models and points out how their strict constraints can lead to limited randomizability. The manuscript considers the question of relaxing row and column sun constraints of the fixed-fixed models. The Rasch models are presented as an alternative with relaxed constraints and sound statistical properties. Models are compared on presence-absence data and surprisingly the fixed-fixed models are observed to produce unreasonably optimistic measures of statistical significance, giving interesting insight into practical effects of limited randomizability.