Cargando…
GDNF secreted from adipose-derived stem cells stimulates VEGF-independent angiogenesis
Adipose tissue stroma contains a population of mesenchymal stem cells (MSC) promote new blood vessel formation and stabilization. These adipose-derived stem cells (ASC) promote de novo formation of vascular structures in vitro. We investigated the angiogenic factors secreted by ASC and discovered th...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095042/ https://www.ncbi.nlm.nih.gov/pubmed/27167204 http://dx.doi.org/10.18632/oncotarget.9208 |
_version_ | 1782465223057211392 |
---|---|
author | Zhong, Zhaohui Gu, Huiying Peng, Jirun Wang, Wenzheng Johnstone, Brian H. March, Keith L. Farlow, Martin R. Du, Yansheng |
author_facet | Zhong, Zhaohui Gu, Huiying Peng, Jirun Wang, Wenzheng Johnstone, Brian H. March, Keith L. Farlow, Martin R. Du, Yansheng |
author_sort | Zhong, Zhaohui |
collection | PubMed |
description | Adipose tissue stroma contains a population of mesenchymal stem cells (MSC) promote new blood vessel formation and stabilization. These adipose-derived stem cells (ASC) promote de novo formation of vascular structures in vitro. We investigated the angiogenic factors secreted by ASC and discovered that glial-derived neurotrophic factor (GDNF) is a key mediator for endothelial cell network formation. It was found that both GDNF alone or present in ASC-conditioned medium (ASC-CM) stimulated capillary network formation by using human umbilical vein endothelial cells (HUVECs) and such an effect was totally independent of vascular endothelial growth factor (VEGF) activity. Additionally, we showed stimulation of capillary network formation by GDNF, but not VEGF, could be blocked by the Ret (rearranged during transfection) receptor antagonist RPI-1, a GDNF signaling inhibitor. Furthermore, GDNF were found to be overexpressed in cancer cells that were resistant to the anti-angiogenic treatment using the VEGF antibody. Cancer cells in the liver hepatocellular carcinoma (HCC), a non-nervous related cancer, highly overexpressed GDNF as compared to normal liver cells. Our data strongly suggest that, in addition to VEGF, GDNF secreted by ASC and HCC cells, may be another important factor promoting pathological neovascularization. Thus, GDNF may be a potential therapeutic target for HCC and obesity treatments. |
format | Online Article Text |
id | pubmed-5095042 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-50950422016-11-22 GDNF secreted from adipose-derived stem cells stimulates VEGF-independent angiogenesis Zhong, Zhaohui Gu, Huiying Peng, Jirun Wang, Wenzheng Johnstone, Brian H. March, Keith L. Farlow, Martin R. Du, Yansheng Oncotarget Research Paper Adipose tissue stroma contains a population of mesenchymal stem cells (MSC) promote new blood vessel formation and stabilization. These adipose-derived stem cells (ASC) promote de novo formation of vascular structures in vitro. We investigated the angiogenic factors secreted by ASC and discovered that glial-derived neurotrophic factor (GDNF) is a key mediator for endothelial cell network formation. It was found that both GDNF alone or present in ASC-conditioned medium (ASC-CM) stimulated capillary network formation by using human umbilical vein endothelial cells (HUVECs) and such an effect was totally independent of vascular endothelial growth factor (VEGF) activity. Additionally, we showed stimulation of capillary network formation by GDNF, but not VEGF, could be blocked by the Ret (rearranged during transfection) receptor antagonist RPI-1, a GDNF signaling inhibitor. Furthermore, GDNF were found to be overexpressed in cancer cells that were resistant to the anti-angiogenic treatment using the VEGF antibody. Cancer cells in the liver hepatocellular carcinoma (HCC), a non-nervous related cancer, highly overexpressed GDNF as compared to normal liver cells. Our data strongly suggest that, in addition to VEGF, GDNF secreted by ASC and HCC cells, may be another important factor promoting pathological neovascularization. Thus, GDNF may be a potential therapeutic target for HCC and obesity treatments. Impact Journals LLC 2016-05-06 /pmc/articles/PMC5095042/ /pubmed/27167204 http://dx.doi.org/10.18632/oncotarget.9208 Text en Copyright: © 2016 Zhong et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Zhong, Zhaohui Gu, Huiying Peng, Jirun Wang, Wenzheng Johnstone, Brian H. March, Keith L. Farlow, Martin R. Du, Yansheng GDNF secreted from adipose-derived stem cells stimulates VEGF-independent angiogenesis |
title | GDNF secreted from adipose-derived stem cells stimulates VEGF-independent angiogenesis |
title_full | GDNF secreted from adipose-derived stem cells stimulates VEGF-independent angiogenesis |
title_fullStr | GDNF secreted from adipose-derived stem cells stimulates VEGF-independent angiogenesis |
title_full_unstemmed | GDNF secreted from adipose-derived stem cells stimulates VEGF-independent angiogenesis |
title_short | GDNF secreted from adipose-derived stem cells stimulates VEGF-independent angiogenesis |
title_sort | gdnf secreted from adipose-derived stem cells stimulates vegf-independent angiogenesis |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095042/ https://www.ncbi.nlm.nih.gov/pubmed/27167204 http://dx.doi.org/10.18632/oncotarget.9208 |
work_keys_str_mv | AT zhongzhaohui gdnfsecretedfromadiposederivedstemcellsstimulatesvegfindependentangiogenesis AT guhuiying gdnfsecretedfromadiposederivedstemcellsstimulatesvegfindependentangiogenesis AT pengjirun gdnfsecretedfromadiposederivedstemcellsstimulatesvegfindependentangiogenesis AT wangwenzheng gdnfsecretedfromadiposederivedstemcellsstimulatesvegfindependentangiogenesis AT johnstonebrianh gdnfsecretedfromadiposederivedstemcellsstimulatesvegfindependentangiogenesis AT marchkeithl gdnfsecretedfromadiposederivedstemcellsstimulatesvegfindependentangiogenesis AT farlowmartinr gdnfsecretedfromadiposederivedstemcellsstimulatesvegfindependentangiogenesis AT duyansheng gdnfsecretedfromadiposederivedstemcellsstimulatesvegfindependentangiogenesis |