Cargando…
Multi-omic data integration enables discovery of hidden biological regularities
Rapid growth in size and complexity of biological data sets has led to the ‘Big Data to Knowledge' challenge. We develop advanced data integration methods for multi-level analysis of genomic, transcriptomic, ribosomal profiling, proteomic and fluxomic data. First, we show that pairwise integrat...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095171/ https://www.ncbi.nlm.nih.gov/pubmed/27782110 http://dx.doi.org/10.1038/ncomms13091 |
_version_ | 1782465260070895616 |
---|---|
author | Ebrahim, Ali Brunk, Elizabeth Tan, Justin O'Brien, Edward J. Kim, Donghyuk Szubin, Richard Lerman, Joshua A. Lechner, Anna Sastry, Anand Bordbar, Aarash Feist, Adam M. Palsson, Bernhard O. |
author_facet | Ebrahim, Ali Brunk, Elizabeth Tan, Justin O'Brien, Edward J. Kim, Donghyuk Szubin, Richard Lerman, Joshua A. Lechner, Anna Sastry, Anand Bordbar, Aarash Feist, Adam M. Palsson, Bernhard O. |
author_sort | Ebrahim, Ali |
collection | PubMed |
description | Rapid growth in size and complexity of biological data sets has led to the ‘Big Data to Knowledge' challenge. We develop advanced data integration methods for multi-level analysis of genomic, transcriptomic, ribosomal profiling, proteomic and fluxomic data. First, we show that pairwise integration of primary omics data reveals regularities that tie cellular processes together in Escherichia coli: the number of protein molecules made per mRNA transcript and the number of ribosomes required per translated protein molecule. Second, we show that genome-scale models, based on genomic and bibliomic data, enable quantitative synchronization of disparate data types. Integrating omics data with models enabled the discovery of two novel regularities: condition invariant in vivo turnover rates of enzymes and the correlation of protein structural motifs and translational pausing. These regularities can be formally represented in a computable format allowing for coherent interpretation and prediction of fitness and selection that underlies cellular physiology. |
format | Online Article Text |
id | pubmed-5095171 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-50951712016-11-18 Multi-omic data integration enables discovery of hidden biological regularities Ebrahim, Ali Brunk, Elizabeth Tan, Justin O'Brien, Edward J. Kim, Donghyuk Szubin, Richard Lerman, Joshua A. Lechner, Anna Sastry, Anand Bordbar, Aarash Feist, Adam M. Palsson, Bernhard O. Nat Commun Article Rapid growth in size and complexity of biological data sets has led to the ‘Big Data to Knowledge' challenge. We develop advanced data integration methods for multi-level analysis of genomic, transcriptomic, ribosomal profiling, proteomic and fluxomic data. First, we show that pairwise integration of primary omics data reveals regularities that tie cellular processes together in Escherichia coli: the number of protein molecules made per mRNA transcript and the number of ribosomes required per translated protein molecule. Second, we show that genome-scale models, based on genomic and bibliomic data, enable quantitative synchronization of disparate data types. Integrating omics data with models enabled the discovery of two novel regularities: condition invariant in vivo turnover rates of enzymes and the correlation of protein structural motifs and translational pausing. These regularities can be formally represented in a computable format allowing for coherent interpretation and prediction of fitness and selection that underlies cellular physiology. Nature Publishing Group 2016-10-26 /pmc/articles/PMC5095171/ /pubmed/27782110 http://dx.doi.org/10.1038/ncomms13091 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Ebrahim, Ali Brunk, Elizabeth Tan, Justin O'Brien, Edward J. Kim, Donghyuk Szubin, Richard Lerman, Joshua A. Lechner, Anna Sastry, Anand Bordbar, Aarash Feist, Adam M. Palsson, Bernhard O. Multi-omic data integration enables discovery of hidden biological regularities |
title | Multi-omic data integration enables discovery of hidden biological regularities |
title_full | Multi-omic data integration enables discovery of hidden biological regularities |
title_fullStr | Multi-omic data integration enables discovery of hidden biological regularities |
title_full_unstemmed | Multi-omic data integration enables discovery of hidden biological regularities |
title_short | Multi-omic data integration enables discovery of hidden biological regularities |
title_sort | multi-omic data integration enables discovery of hidden biological regularities |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095171/ https://www.ncbi.nlm.nih.gov/pubmed/27782110 http://dx.doi.org/10.1038/ncomms13091 |
work_keys_str_mv | AT ebrahimali multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities AT brunkelizabeth multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities AT tanjustin multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities AT obrienedwardj multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities AT kimdonghyuk multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities AT szubinrichard multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities AT lermanjoshuaa multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities AT lechneranna multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities AT sastryanand multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities AT bordbaraarash multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities AT feistadamm multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities AT palssonbernhardo multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities |