Cargando…

Multi-omic data integration enables discovery of hidden biological regularities

Rapid growth in size and complexity of biological data sets has led to the ‘Big Data to Knowledge' challenge. We develop advanced data integration methods for multi-level analysis of genomic, transcriptomic, ribosomal profiling, proteomic and fluxomic data. First, we show that pairwise integrat...

Descripción completa

Detalles Bibliográficos
Autores principales: Ebrahim, Ali, Brunk, Elizabeth, Tan, Justin, O'Brien, Edward J., Kim, Donghyuk, Szubin, Richard, Lerman, Joshua A., Lechner, Anna, Sastry, Anand, Bordbar, Aarash, Feist, Adam M., Palsson, Bernhard O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095171/
https://www.ncbi.nlm.nih.gov/pubmed/27782110
http://dx.doi.org/10.1038/ncomms13091
_version_ 1782465260070895616
author Ebrahim, Ali
Brunk, Elizabeth
Tan, Justin
O'Brien, Edward J.
Kim, Donghyuk
Szubin, Richard
Lerman, Joshua A.
Lechner, Anna
Sastry, Anand
Bordbar, Aarash
Feist, Adam M.
Palsson, Bernhard O.
author_facet Ebrahim, Ali
Brunk, Elizabeth
Tan, Justin
O'Brien, Edward J.
Kim, Donghyuk
Szubin, Richard
Lerman, Joshua A.
Lechner, Anna
Sastry, Anand
Bordbar, Aarash
Feist, Adam M.
Palsson, Bernhard O.
author_sort Ebrahim, Ali
collection PubMed
description Rapid growth in size and complexity of biological data sets has led to the ‘Big Data to Knowledge' challenge. We develop advanced data integration methods for multi-level analysis of genomic, transcriptomic, ribosomal profiling, proteomic and fluxomic data. First, we show that pairwise integration of primary omics data reveals regularities that tie cellular processes together in Escherichia coli: the number of protein molecules made per mRNA transcript and the number of ribosomes required per translated protein molecule. Second, we show that genome-scale models, based on genomic and bibliomic data, enable quantitative synchronization of disparate data types. Integrating omics data with models enabled the discovery of two novel regularities: condition invariant in vivo turnover rates of enzymes and the correlation of protein structural motifs and translational pausing. These regularities can be formally represented in a computable format allowing for coherent interpretation and prediction of fitness and selection that underlies cellular physiology.
format Online
Article
Text
id pubmed-5095171
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-50951712016-11-18 Multi-omic data integration enables discovery of hidden biological regularities Ebrahim, Ali Brunk, Elizabeth Tan, Justin O'Brien, Edward J. Kim, Donghyuk Szubin, Richard Lerman, Joshua A. Lechner, Anna Sastry, Anand Bordbar, Aarash Feist, Adam M. Palsson, Bernhard O. Nat Commun Article Rapid growth in size and complexity of biological data sets has led to the ‘Big Data to Knowledge' challenge. We develop advanced data integration methods for multi-level analysis of genomic, transcriptomic, ribosomal profiling, proteomic and fluxomic data. First, we show that pairwise integration of primary omics data reveals regularities that tie cellular processes together in Escherichia coli: the number of protein molecules made per mRNA transcript and the number of ribosomes required per translated protein molecule. Second, we show that genome-scale models, based on genomic and bibliomic data, enable quantitative synchronization of disparate data types. Integrating omics data with models enabled the discovery of two novel regularities: condition invariant in vivo turnover rates of enzymes and the correlation of protein structural motifs and translational pausing. These regularities can be formally represented in a computable format allowing for coherent interpretation and prediction of fitness and selection that underlies cellular physiology. Nature Publishing Group 2016-10-26 /pmc/articles/PMC5095171/ /pubmed/27782110 http://dx.doi.org/10.1038/ncomms13091 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Ebrahim, Ali
Brunk, Elizabeth
Tan, Justin
O'Brien, Edward J.
Kim, Donghyuk
Szubin, Richard
Lerman, Joshua A.
Lechner, Anna
Sastry, Anand
Bordbar, Aarash
Feist, Adam M.
Palsson, Bernhard O.
Multi-omic data integration enables discovery of hidden biological regularities
title Multi-omic data integration enables discovery of hidden biological regularities
title_full Multi-omic data integration enables discovery of hidden biological regularities
title_fullStr Multi-omic data integration enables discovery of hidden biological regularities
title_full_unstemmed Multi-omic data integration enables discovery of hidden biological regularities
title_short Multi-omic data integration enables discovery of hidden biological regularities
title_sort multi-omic data integration enables discovery of hidden biological regularities
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095171/
https://www.ncbi.nlm.nih.gov/pubmed/27782110
http://dx.doi.org/10.1038/ncomms13091
work_keys_str_mv AT ebrahimali multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities
AT brunkelizabeth multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities
AT tanjustin multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities
AT obrienedwardj multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities
AT kimdonghyuk multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities
AT szubinrichard multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities
AT lermanjoshuaa multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities
AT lechneranna multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities
AT sastryanand multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities
AT bordbaraarash multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities
AT feistadamm multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities
AT palssonbernhardo multiomicdataintegrationenablesdiscoveryofhiddenbiologicalregularities