Cargando…

Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging

The desire to study biology in situ has been aided by many imaging techniques. Among these, X-ray fluorescence (XRF) mapping permits observation of elemental distributions in a multichannel manner. However, XRF imaging is underused, in part, because of the difficulty in interpreting maps without an...

Descripción completa

Detalles Bibliográficos
Autores principales: Serpell, Christopher J., Rutte, Reida N., Geraki, Kalotina, Pach, Elzbieta, Martincic, Markus, Kierkowicz, Magdalena, De Munari, Sonia, Wals, Kim, Raj, Ritu, Ballesteros, Belén, Tobias, Gerard, Anthony, Daniel C., Davis, Benjamin G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095174/
https://www.ncbi.nlm.nih.gov/pubmed/27782209
http://dx.doi.org/10.1038/ncomms13118
_version_ 1782465260740935680
author Serpell, Christopher J.
Rutte, Reida N.
Geraki, Kalotina
Pach, Elzbieta
Martincic, Markus
Kierkowicz, Magdalena
De Munari, Sonia
Wals, Kim
Raj, Ritu
Ballesteros, Belén
Tobias, Gerard
Anthony, Daniel C.
Davis, Benjamin G.
author_facet Serpell, Christopher J.
Rutte, Reida N.
Geraki, Kalotina
Pach, Elzbieta
Martincic, Markus
Kierkowicz, Magdalena
De Munari, Sonia
Wals, Kim
Raj, Ritu
Ballesteros, Belén
Tobias, Gerard
Anthony, Daniel C.
Davis, Benjamin G.
author_sort Serpell, Christopher J.
collection PubMed
description The desire to study biology in situ has been aided by many imaging techniques. Among these, X-ray fluorescence (XRF) mapping permits observation of elemental distributions in a multichannel manner. However, XRF imaging is underused, in part, because of the difficulty in interpreting maps without an underlying cellular ‘blueprint'; this could be supplied using contrast agents. Carbon nanotubes (CNTs) can be filled with a wide range of inorganic materials, and thus can be used as ‘contrast agents' if biologically absent elements are encapsulated. Here we show that sealed single-walled CNTs filled with lead, barium and even krypton can be produced, and externally decorated with peptides to provide affinity for sub-cellular targets. The agents are able to highlight specific organelles in multiplexed XRF mapping, and are, in principle, a general and versatile tool for this, and other modes of biological imaging.
format Online
Article
Text
id pubmed-5095174
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-50951742016-11-18 Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging Serpell, Christopher J. Rutte, Reida N. Geraki, Kalotina Pach, Elzbieta Martincic, Markus Kierkowicz, Magdalena De Munari, Sonia Wals, Kim Raj, Ritu Ballesteros, Belén Tobias, Gerard Anthony, Daniel C. Davis, Benjamin G. Nat Commun Article The desire to study biology in situ has been aided by many imaging techniques. Among these, X-ray fluorescence (XRF) mapping permits observation of elemental distributions in a multichannel manner. However, XRF imaging is underused, in part, because of the difficulty in interpreting maps without an underlying cellular ‘blueprint'; this could be supplied using contrast agents. Carbon nanotubes (CNTs) can be filled with a wide range of inorganic materials, and thus can be used as ‘contrast agents' if biologically absent elements are encapsulated. Here we show that sealed single-walled CNTs filled with lead, barium and even krypton can be produced, and externally decorated with peptides to provide affinity for sub-cellular targets. The agents are able to highlight specific organelles in multiplexed XRF mapping, and are, in principle, a general and versatile tool for this, and other modes of biological imaging. Nature Publishing Group 2016-10-26 /pmc/articles/PMC5095174/ /pubmed/27782209 http://dx.doi.org/10.1038/ncomms13118 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Serpell, Christopher J.
Rutte, Reida N.
Geraki, Kalotina
Pach, Elzbieta
Martincic, Markus
Kierkowicz, Magdalena
De Munari, Sonia
Wals, Kim
Raj, Ritu
Ballesteros, Belén
Tobias, Gerard
Anthony, Daniel C.
Davis, Benjamin G.
Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging
title Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging
title_full Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging
title_fullStr Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging
title_full_unstemmed Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging
title_short Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging
title_sort carbon nanotubes allow capture of krypton, barium and lead for multichannel biological x-ray fluorescence imaging
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095174/
https://www.ncbi.nlm.nih.gov/pubmed/27782209
http://dx.doi.org/10.1038/ncomms13118
work_keys_str_mv AT serpellchristopherj carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging
AT ruttereidan carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging
AT gerakikalotina carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging
AT pachelzbieta carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging
AT martincicmarkus carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging
AT kierkowiczmagdalena carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging
AT demunarisonia carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging
AT walskim carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging
AT rajritu carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging
AT ballesterosbelen carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging
AT tobiasgerard carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging
AT anthonydanielc carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging
AT davisbenjaming carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging