Cargando…
Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging
The desire to study biology in situ has been aided by many imaging techniques. Among these, X-ray fluorescence (XRF) mapping permits observation of elemental distributions in a multichannel manner. However, XRF imaging is underused, in part, because of the difficulty in interpreting maps without an...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095174/ https://www.ncbi.nlm.nih.gov/pubmed/27782209 http://dx.doi.org/10.1038/ncomms13118 |
_version_ | 1782465260740935680 |
---|---|
author | Serpell, Christopher J. Rutte, Reida N. Geraki, Kalotina Pach, Elzbieta Martincic, Markus Kierkowicz, Magdalena De Munari, Sonia Wals, Kim Raj, Ritu Ballesteros, Belén Tobias, Gerard Anthony, Daniel C. Davis, Benjamin G. |
author_facet | Serpell, Christopher J. Rutte, Reida N. Geraki, Kalotina Pach, Elzbieta Martincic, Markus Kierkowicz, Magdalena De Munari, Sonia Wals, Kim Raj, Ritu Ballesteros, Belén Tobias, Gerard Anthony, Daniel C. Davis, Benjamin G. |
author_sort | Serpell, Christopher J. |
collection | PubMed |
description | The desire to study biology in situ has been aided by many imaging techniques. Among these, X-ray fluorescence (XRF) mapping permits observation of elemental distributions in a multichannel manner. However, XRF imaging is underused, in part, because of the difficulty in interpreting maps without an underlying cellular ‘blueprint'; this could be supplied using contrast agents. Carbon nanotubes (CNTs) can be filled with a wide range of inorganic materials, and thus can be used as ‘contrast agents' if biologically absent elements are encapsulated. Here we show that sealed single-walled CNTs filled with lead, barium and even krypton can be produced, and externally decorated with peptides to provide affinity for sub-cellular targets. The agents are able to highlight specific organelles in multiplexed XRF mapping, and are, in principle, a general and versatile tool for this, and other modes of biological imaging. |
format | Online Article Text |
id | pubmed-5095174 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-50951742016-11-18 Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging Serpell, Christopher J. Rutte, Reida N. Geraki, Kalotina Pach, Elzbieta Martincic, Markus Kierkowicz, Magdalena De Munari, Sonia Wals, Kim Raj, Ritu Ballesteros, Belén Tobias, Gerard Anthony, Daniel C. Davis, Benjamin G. Nat Commun Article The desire to study biology in situ has been aided by many imaging techniques. Among these, X-ray fluorescence (XRF) mapping permits observation of elemental distributions in a multichannel manner. However, XRF imaging is underused, in part, because of the difficulty in interpreting maps without an underlying cellular ‘blueprint'; this could be supplied using contrast agents. Carbon nanotubes (CNTs) can be filled with a wide range of inorganic materials, and thus can be used as ‘contrast agents' if biologically absent elements are encapsulated. Here we show that sealed single-walled CNTs filled with lead, barium and even krypton can be produced, and externally decorated with peptides to provide affinity for sub-cellular targets. The agents are able to highlight specific organelles in multiplexed XRF mapping, and are, in principle, a general and versatile tool for this, and other modes of biological imaging. Nature Publishing Group 2016-10-26 /pmc/articles/PMC5095174/ /pubmed/27782209 http://dx.doi.org/10.1038/ncomms13118 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Serpell, Christopher J. Rutte, Reida N. Geraki, Kalotina Pach, Elzbieta Martincic, Markus Kierkowicz, Magdalena De Munari, Sonia Wals, Kim Raj, Ritu Ballesteros, Belén Tobias, Gerard Anthony, Daniel C. Davis, Benjamin G. Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging |
title | Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging |
title_full | Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging |
title_fullStr | Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging |
title_full_unstemmed | Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging |
title_short | Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging |
title_sort | carbon nanotubes allow capture of krypton, barium and lead for multichannel biological x-ray fluorescence imaging |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095174/ https://www.ncbi.nlm.nih.gov/pubmed/27782209 http://dx.doi.org/10.1038/ncomms13118 |
work_keys_str_mv | AT serpellchristopherj carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging AT ruttereidan carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging AT gerakikalotina carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging AT pachelzbieta carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging AT martincicmarkus carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging AT kierkowiczmagdalena carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging AT demunarisonia carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging AT walskim carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging AT rajritu carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging AT ballesterosbelen carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging AT tobiasgerard carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging AT anthonydanielc carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging AT davisbenjaming carbonnanotubesallowcaptureofkryptonbariumandleadformultichannelbiologicalxrayfluorescenceimaging |