Cargando…
PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation
Despite the global impact of macrophage activation in vascular disease, the underlying mechanisms remain obscure. Here we show, with global proteomic analysis of macrophage cell lines treated with either IFNγ or IL-4, that PARP9 and PARP14 regulate macrophage activation. In primary macrophages, PARP...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095532/ https://www.ncbi.nlm.nih.gov/pubmed/27796300 http://dx.doi.org/10.1038/ncomms12849 |
_version_ | 1782465298856673280 |
---|---|
author | Iwata, Hiroshi Goettsch, Claudia Sharma, Amitabh Ricchiuto, Piero Goh, Wilson Wen Bin Halu, Arda Yamada, Iwao Yoshida, Hideo Hara, Takuya Wei, Mei Inoue, Noriyuki Fukuda, Daiju Mojcher, Alexander Mattson, Peter C. Barabási, Albert-László Boothby, Mark Aikawa, Elena Singh, Sasha A. Aikawa, Masanori |
author_facet | Iwata, Hiroshi Goettsch, Claudia Sharma, Amitabh Ricchiuto, Piero Goh, Wilson Wen Bin Halu, Arda Yamada, Iwao Yoshida, Hideo Hara, Takuya Wei, Mei Inoue, Noriyuki Fukuda, Daiju Mojcher, Alexander Mattson, Peter C. Barabási, Albert-László Boothby, Mark Aikawa, Elena Singh, Sasha A. Aikawa, Masanori |
author_sort | Iwata, Hiroshi |
collection | PubMed |
description | Despite the global impact of macrophage activation in vascular disease, the underlying mechanisms remain obscure. Here we show, with global proteomic analysis of macrophage cell lines treated with either IFNγ or IL-4, that PARP9 and PARP14 regulate macrophage activation. In primary macrophages, PARP9 and PARP14 have opposing roles in macrophage activation. PARP14 silencing induces pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells, whereas it suppresses anti-inflammatory gene expression and STAT6 phosphorylation in M(IL-4) cells. PARP9 silencing suppresses pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells. PARP14 induces ADP-ribosylation of STAT1, which is suppressed by PARP9. Mutations at these ADP-ribosylation sites lead to increased phosphorylation. Network analysis links PARP9–PARP14 with human coronary artery disease. PARP14 deficiency in haematopoietic cells accelerates the development and inflammatory burden of acute and chronic arterial lesions in mice. These findings suggest that PARP9 and PARP14 cross-regulate macrophage activation. |
format | Online Article Text |
id | pubmed-5095532 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-50955322016-11-18 PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation Iwata, Hiroshi Goettsch, Claudia Sharma, Amitabh Ricchiuto, Piero Goh, Wilson Wen Bin Halu, Arda Yamada, Iwao Yoshida, Hideo Hara, Takuya Wei, Mei Inoue, Noriyuki Fukuda, Daiju Mojcher, Alexander Mattson, Peter C. Barabási, Albert-László Boothby, Mark Aikawa, Elena Singh, Sasha A. Aikawa, Masanori Nat Commun Article Despite the global impact of macrophage activation in vascular disease, the underlying mechanisms remain obscure. Here we show, with global proteomic analysis of macrophage cell lines treated with either IFNγ or IL-4, that PARP9 and PARP14 regulate macrophage activation. In primary macrophages, PARP9 and PARP14 have opposing roles in macrophage activation. PARP14 silencing induces pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells, whereas it suppresses anti-inflammatory gene expression and STAT6 phosphorylation in M(IL-4) cells. PARP9 silencing suppresses pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells. PARP14 induces ADP-ribosylation of STAT1, which is suppressed by PARP9. Mutations at these ADP-ribosylation sites lead to increased phosphorylation. Network analysis links PARP9–PARP14 with human coronary artery disease. PARP14 deficiency in haematopoietic cells accelerates the development and inflammatory burden of acute and chronic arterial lesions in mice. These findings suggest that PARP9 and PARP14 cross-regulate macrophage activation. Nature Publishing Group 2016-10-31 /pmc/articles/PMC5095532/ /pubmed/27796300 http://dx.doi.org/10.1038/ncomms12849 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Iwata, Hiroshi Goettsch, Claudia Sharma, Amitabh Ricchiuto, Piero Goh, Wilson Wen Bin Halu, Arda Yamada, Iwao Yoshida, Hideo Hara, Takuya Wei, Mei Inoue, Noriyuki Fukuda, Daiju Mojcher, Alexander Mattson, Peter C. Barabási, Albert-László Boothby, Mark Aikawa, Elena Singh, Sasha A. Aikawa, Masanori PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation |
title | PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation |
title_full | PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation |
title_fullStr | PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation |
title_full_unstemmed | PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation |
title_short | PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation |
title_sort | parp9 and parp14 cross-regulate macrophage activation via stat1 adp-ribosylation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095532/ https://www.ncbi.nlm.nih.gov/pubmed/27796300 http://dx.doi.org/10.1038/ncomms12849 |
work_keys_str_mv | AT iwatahiroshi parp9andparp14crossregulatemacrophageactivationviastat1adpribosylation AT goettschclaudia parp9andparp14crossregulatemacrophageactivationviastat1adpribosylation AT sharmaamitabh parp9andparp14crossregulatemacrophageactivationviastat1adpribosylation AT ricchiutopiero parp9andparp14crossregulatemacrophageactivationviastat1adpribosylation AT gohwilsonwenbin parp9andparp14crossregulatemacrophageactivationviastat1adpribosylation AT haluarda parp9andparp14crossregulatemacrophageactivationviastat1adpribosylation AT yamadaiwao parp9andparp14crossregulatemacrophageactivationviastat1adpribosylation AT yoshidahideo parp9andparp14crossregulatemacrophageactivationviastat1adpribosylation AT haratakuya parp9andparp14crossregulatemacrophageactivationviastat1adpribosylation AT weimei parp9andparp14crossregulatemacrophageactivationviastat1adpribosylation AT inouenoriyuki parp9andparp14crossregulatemacrophageactivationviastat1adpribosylation AT fukudadaiju parp9andparp14crossregulatemacrophageactivationviastat1adpribosylation AT mojcheralexander parp9andparp14crossregulatemacrophageactivationviastat1adpribosylation AT mattsonpeterc parp9andparp14crossregulatemacrophageactivationviastat1adpribosylation AT barabasialbertlaszlo parp9andparp14crossregulatemacrophageactivationviastat1adpribosylation AT boothbymark parp9andparp14crossregulatemacrophageactivationviastat1adpribosylation AT aikawaelena parp9andparp14crossregulatemacrophageactivationviastat1adpribosylation AT singhsashaa parp9andparp14crossregulatemacrophageactivationviastat1adpribosylation AT aikawamasanori parp9andparp14crossregulatemacrophageactivationviastat1adpribosylation |