Cargando…

Room-temperature Tamm-plasmon exciton-polaritons with a WSe(2) monolayer

Solid-state cavity quantum electrodynamics is a rapidly advancing field, which explores the frontiers of light–matter coupling. Metal-based approaches are of particular interest in this field, as they carry the potential to squeeze optical modes to spaces significantly below the diffraction limit. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Lundt, Nils, Klembt, Sebastian, Cherotchenko, Evgeniia, Betzold, Simon, Iff, Oliver, Nalitov, Anton V., Klaas, Martin, Dietrich, Christof P., Kavokin, Alexey V., Höfling, Sven, Schneider, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095560/
https://www.ncbi.nlm.nih.gov/pubmed/27796288
http://dx.doi.org/10.1038/ncomms13328
_version_ 1782465302694461440
author Lundt, Nils
Klembt, Sebastian
Cherotchenko, Evgeniia
Betzold, Simon
Iff, Oliver
Nalitov, Anton V.
Klaas, Martin
Dietrich, Christof P.
Kavokin, Alexey V.
Höfling, Sven
Schneider, Christian
author_facet Lundt, Nils
Klembt, Sebastian
Cherotchenko, Evgeniia
Betzold, Simon
Iff, Oliver
Nalitov, Anton V.
Klaas, Martin
Dietrich, Christof P.
Kavokin, Alexey V.
Höfling, Sven
Schneider, Christian
author_sort Lundt, Nils
collection PubMed
description Solid-state cavity quantum electrodynamics is a rapidly advancing field, which explores the frontiers of light–matter coupling. Metal-based approaches are of particular interest in this field, as they carry the potential to squeeze optical modes to spaces significantly below the diffraction limit. Transition metal dichalcogenides are ideally suited as the active material in cavity quantum electrodynamics, as they interact strongly with light at the ultimate monolayer limit. Here, we implement a Tamm-plasmon-polariton structure and study the coupling to a monolayer of WSe(2), hosting highly stable excitons. Exciton-polariton formation at room temperature is manifested in the characteristic energy–momentum dispersion relation studied in photoluminescence, featuring an anti-crossing between the exciton and photon modes with a Rabi-splitting of 23.5 meV. Creating polaritonic quasiparticles in monolithic, compact architectures with atomic monolayers under ambient conditions is a crucial step towards the exploration of nonlinearities, macroscopic coherence and advanced spinor physics with novel, low-mass bosons.
format Online
Article
Text
id pubmed-5095560
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-50955602016-11-18 Room-temperature Tamm-plasmon exciton-polaritons with a WSe(2) monolayer Lundt, Nils Klembt, Sebastian Cherotchenko, Evgeniia Betzold, Simon Iff, Oliver Nalitov, Anton V. Klaas, Martin Dietrich, Christof P. Kavokin, Alexey V. Höfling, Sven Schneider, Christian Nat Commun Article Solid-state cavity quantum electrodynamics is a rapidly advancing field, which explores the frontiers of light–matter coupling. Metal-based approaches are of particular interest in this field, as they carry the potential to squeeze optical modes to spaces significantly below the diffraction limit. Transition metal dichalcogenides are ideally suited as the active material in cavity quantum electrodynamics, as they interact strongly with light at the ultimate monolayer limit. Here, we implement a Tamm-plasmon-polariton structure and study the coupling to a monolayer of WSe(2), hosting highly stable excitons. Exciton-polariton formation at room temperature is manifested in the characteristic energy–momentum dispersion relation studied in photoluminescence, featuring an anti-crossing between the exciton and photon modes with a Rabi-splitting of 23.5 meV. Creating polaritonic quasiparticles in monolithic, compact architectures with atomic monolayers under ambient conditions is a crucial step towards the exploration of nonlinearities, macroscopic coherence and advanced spinor physics with novel, low-mass bosons. Nature Publishing Group 2016-10-31 /pmc/articles/PMC5095560/ /pubmed/27796288 http://dx.doi.org/10.1038/ncomms13328 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Lundt, Nils
Klembt, Sebastian
Cherotchenko, Evgeniia
Betzold, Simon
Iff, Oliver
Nalitov, Anton V.
Klaas, Martin
Dietrich, Christof P.
Kavokin, Alexey V.
Höfling, Sven
Schneider, Christian
Room-temperature Tamm-plasmon exciton-polaritons with a WSe(2) monolayer
title Room-temperature Tamm-plasmon exciton-polaritons with a WSe(2) monolayer
title_full Room-temperature Tamm-plasmon exciton-polaritons with a WSe(2) monolayer
title_fullStr Room-temperature Tamm-plasmon exciton-polaritons with a WSe(2) monolayer
title_full_unstemmed Room-temperature Tamm-plasmon exciton-polaritons with a WSe(2) monolayer
title_short Room-temperature Tamm-plasmon exciton-polaritons with a WSe(2) monolayer
title_sort room-temperature tamm-plasmon exciton-polaritons with a wse(2) monolayer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095560/
https://www.ncbi.nlm.nih.gov/pubmed/27796288
http://dx.doi.org/10.1038/ncomms13328
work_keys_str_mv AT lundtnils roomtemperaturetammplasmonexcitonpolaritonswithawse2monolayer
AT klembtsebastian roomtemperaturetammplasmonexcitonpolaritonswithawse2monolayer
AT cherotchenkoevgeniia roomtemperaturetammplasmonexcitonpolaritonswithawse2monolayer
AT betzoldsimon roomtemperaturetammplasmonexcitonpolaritonswithawse2monolayer
AT iffoliver roomtemperaturetammplasmonexcitonpolaritonswithawse2monolayer
AT nalitovantonv roomtemperaturetammplasmonexcitonpolaritonswithawse2monolayer
AT klaasmartin roomtemperaturetammplasmonexcitonpolaritonswithawse2monolayer
AT dietrichchristofp roomtemperaturetammplasmonexcitonpolaritonswithawse2monolayer
AT kavokinalexeyv roomtemperaturetammplasmonexcitonpolaritonswithawse2monolayer
AT hoflingsven roomtemperaturetammplasmonexcitonpolaritonswithawse2monolayer
AT schneiderchristian roomtemperaturetammplasmonexcitonpolaritonswithawse2monolayer