Cargando…
Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments
Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells....
Autores principales: | Van Valen, David A., Kudo, Takamasa, Lane, Keara M., Macklin, Derek N., Quach, Nicolas T., DeFelice, Mialy M., Maayan, Inbal, Tanouchi, Yu, Ashley, Euan A., Covert, Markus W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5096676/ https://www.ncbi.nlm.nih.gov/pubmed/27814364 http://dx.doi.org/10.1371/journal.pcbi.1005177 |
Ejemplares similares
-
Combinatorial processing of bacterial and host-derived innate immune stimuli at the single-cell level
por: Gutschow, Miriam V., et al.
Publicado: (2019) -
Techniques for Studying Decoding of Single Cell Dynamics
por: Jeknić, Stevan, et al.
Publicado: (2019) -
Combining Comprehensive Analysis of Off-Site Lambda Phage Integration with a CRISPR-Based Means of Characterizing Downstream Physiology
por: Tanouchi, Yu, et al.
Publicado: (2017) -
WholeCellKB: model organism databases for comprehensive whole-cell models
por: Karr, Jonathan R., et al.
Publicado: (2013) -
Competing pathways control host resistance to virus via tRNA modification and programmed ribosomal frameshifting
por: Maynard, Nathaniel D, et al.
Publicado: (2012)