Cargando…
Some symmetric identities for the generalized Bernoulli, Euler and Genocchi polynomials associated with Hermite polynomials
In 2008, Liu and Wang established various symmetric identities for Bernoulli, Euler and Genocchi polynomials. In this paper, we extend these identities in a unified and generalized form to families of Hermite–Bernoulli, Euler and Genocchi polynomials. The procedure followed is that of generating fun...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5097062/ https://www.ncbi.nlm.nih.gov/pubmed/27872796 http://dx.doi.org/10.1186/s40064-016-3585-3 |
Sumario: | In 2008, Liu and Wang established various symmetric identities for Bernoulli, Euler and Genocchi polynomials. In this paper, we extend these identities in a unified and generalized form to families of Hermite–Bernoulli, Euler and Genocchi polynomials. The procedure followed is that of generating functions. Some relevant connections of the general theory developed here with the results obtained earlier by Pathan and Khan are also pointed out. |
---|