Cargando…

Use of molecular typing to investigate bacterial translocation from the intestinal tract of chlorpyrifos-exposed rats

BACKGROUND: Human are confronted on a daily basis with contaminant pesticide residues in food, water and other components of the environment. Although the digestive system is the first organ to come into contact with food contaminants, very few data are available on the impact of low-dose pesticide...

Descripción completa

Detalles Bibliográficos
Autores principales: Joly Condette, Claire, Elion Dzon, Bertin, Hamdad, Farida, Biendo, Maurice, Bach, Véronique, Khorsi-Cauet, Hafida
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5097847/
https://www.ncbi.nlm.nih.gov/pubmed/27826358
http://dx.doi.org/10.1186/s13099-016-0129-x
_version_ 1782465678873198592
author Joly Condette, Claire
Elion Dzon, Bertin
Hamdad, Farida
Biendo, Maurice
Bach, Véronique
Khorsi-Cauet, Hafida
author_facet Joly Condette, Claire
Elion Dzon, Bertin
Hamdad, Farida
Biendo, Maurice
Bach, Véronique
Khorsi-Cauet, Hafida
author_sort Joly Condette, Claire
collection PubMed
description BACKGROUND: Human are confronted on a daily basis with contaminant pesticide residues in food, water and other components of the environment. Although the digestive system is the first organ to come into contact with food contaminants, very few data are available on the impact of low-dose pesticide exposure during the in utero and postnatal periods on intestinal bacterial translocation (BT). Previous studies have revealed that chlorpyrifos (CPF) exposure is associated with intestinal dysbiosis and the contamination of sterile organs. Here, molecular typing was used to investigate intestinal bacterial translocation in rats exposed to chlorpyrifos in utero and during lactation. The translocated bacteria were profiled, and CPF tolerance and antibiotic resistance traits were determined. METHODS: A total of 72 intestinal segments and extra-intestinal organs were obtained from 14 CPF-exposed rats. The samples were cultured to isolate bacterial strains that had tolerated treatment with 1 or 5 mg CPF/kg bodyweight/day in vivo. Strains were identified using matrix-assisted laser desorption/ionization (MALDI) Biotyper. The disk diffusion method was used to determine the antibiotic susceptibility. The isolates were genotyped with PCR assays for the enterobacterial repetitive intergenic consensus sequence and random amplification polymorphic DNA. RESULTS: Bacterial translocation was confirmed for 7 of the 31 strains (22.6 %) isolated from extra-intestinal sites. Overall, the most prevalent bacteria were Staphylococcus aureus (55.5 % of the 72 intestinal and extra-intestinal isolates), Enterococcus faecalis (27.7 %) and Bacillus cereus (9.8 %). 5 % of the S. aureus isolates displayed methicillin resistance. Seventy two strains were identified phenotypically, and seven translocated strains (mainly S. aureus) were identified by genotyping. Genotypically confirmed translocation was mainly observed found in pesticide-exposed groups (6 out of 7). CONCLUSION: BT from the intestinal tract colonized normally sterile extra-intestinal organs in CPF-exposed rats. Our findings validate the use of molecular typing for the assessment of intestinal BT in CPF-exposed rats during critical periods of development.
format Online
Article
Text
id pubmed-5097847
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-50978472016-11-08 Use of molecular typing to investigate bacterial translocation from the intestinal tract of chlorpyrifos-exposed rats Joly Condette, Claire Elion Dzon, Bertin Hamdad, Farida Biendo, Maurice Bach, Véronique Khorsi-Cauet, Hafida Gut Pathog Research BACKGROUND: Human are confronted on a daily basis with contaminant pesticide residues in food, water and other components of the environment. Although the digestive system is the first organ to come into contact with food contaminants, very few data are available on the impact of low-dose pesticide exposure during the in utero and postnatal periods on intestinal bacterial translocation (BT). Previous studies have revealed that chlorpyrifos (CPF) exposure is associated with intestinal dysbiosis and the contamination of sterile organs. Here, molecular typing was used to investigate intestinal bacterial translocation in rats exposed to chlorpyrifos in utero and during lactation. The translocated bacteria were profiled, and CPF tolerance and antibiotic resistance traits were determined. METHODS: A total of 72 intestinal segments and extra-intestinal organs were obtained from 14 CPF-exposed rats. The samples were cultured to isolate bacterial strains that had tolerated treatment with 1 or 5 mg CPF/kg bodyweight/day in vivo. Strains were identified using matrix-assisted laser desorption/ionization (MALDI) Biotyper. The disk diffusion method was used to determine the antibiotic susceptibility. The isolates were genotyped with PCR assays for the enterobacterial repetitive intergenic consensus sequence and random amplification polymorphic DNA. RESULTS: Bacterial translocation was confirmed for 7 of the 31 strains (22.6 %) isolated from extra-intestinal sites. Overall, the most prevalent bacteria were Staphylococcus aureus (55.5 % of the 72 intestinal and extra-intestinal isolates), Enterococcus faecalis (27.7 %) and Bacillus cereus (9.8 %). 5 % of the S. aureus isolates displayed methicillin resistance. Seventy two strains were identified phenotypically, and seven translocated strains (mainly S. aureus) were identified by genotyping. Genotypically confirmed translocation was mainly observed found in pesticide-exposed groups (6 out of 7). CONCLUSION: BT from the intestinal tract colonized normally sterile extra-intestinal organs in CPF-exposed rats. Our findings validate the use of molecular typing for the assessment of intestinal BT in CPF-exposed rats during critical periods of development. BioMed Central 2016-11-05 /pmc/articles/PMC5097847/ /pubmed/27826358 http://dx.doi.org/10.1186/s13099-016-0129-x Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Joly Condette, Claire
Elion Dzon, Bertin
Hamdad, Farida
Biendo, Maurice
Bach, Véronique
Khorsi-Cauet, Hafida
Use of molecular typing to investigate bacterial translocation from the intestinal tract of chlorpyrifos-exposed rats
title Use of molecular typing to investigate bacterial translocation from the intestinal tract of chlorpyrifos-exposed rats
title_full Use of molecular typing to investigate bacterial translocation from the intestinal tract of chlorpyrifos-exposed rats
title_fullStr Use of molecular typing to investigate bacterial translocation from the intestinal tract of chlorpyrifos-exposed rats
title_full_unstemmed Use of molecular typing to investigate bacterial translocation from the intestinal tract of chlorpyrifos-exposed rats
title_short Use of molecular typing to investigate bacterial translocation from the intestinal tract of chlorpyrifos-exposed rats
title_sort use of molecular typing to investigate bacterial translocation from the intestinal tract of chlorpyrifos-exposed rats
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5097847/
https://www.ncbi.nlm.nih.gov/pubmed/27826358
http://dx.doi.org/10.1186/s13099-016-0129-x
work_keys_str_mv AT jolycondetteclaire useofmoleculartypingtoinvestigatebacterialtranslocationfromtheintestinaltractofchlorpyrifosexposedrats
AT eliondzonbertin useofmoleculartypingtoinvestigatebacterialtranslocationfromtheintestinaltractofchlorpyrifosexposedrats
AT hamdadfarida useofmoleculartypingtoinvestigatebacterialtranslocationfromtheintestinaltractofchlorpyrifosexposedrats
AT biendomaurice useofmoleculartypingtoinvestigatebacterialtranslocationfromtheintestinaltractofchlorpyrifosexposedrats
AT bachveronique useofmoleculartypingtoinvestigatebacterialtranslocationfromtheintestinaltractofchlorpyrifosexposedrats
AT khorsicauethafida useofmoleculartypingtoinvestigatebacterialtranslocationfromtheintestinaltractofchlorpyrifosexposedrats