Cargando…
Distributed gene expression modelling for exploring variability in epigenetic function
BACKGROUND: Predictive gene expression modelling is an important tool in computational biology due to the volume of high-throughput sequencing data generated by recent consortia. However, the scope of previous studies has been restricted to a small set of cell-lines or experimental conditions due an...
Autores principales: | Budden, David M., Crampin, Edmund J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5097851/ https://www.ncbi.nlm.nih.gov/pubmed/27816056 http://dx.doi.org/10.1186/s12859-016-1313-1 |
Ejemplares similares
-
Modelling the conditional regulatory activity of methylated and bivalent promoters
por: Budden, David M., et al.
Publicado: (2015) -
Information theoretic approaches for inference of biological networks from continuous-valued data
por: Budden, David M., et al.
Publicado: (2016) -
Virtual Reference Environments: a simple way to make research reproducible
por: Hurley, Daniel G., et al.
Publicado: (2015) -
Predicting expression: the complementary power of histone modification and transcription factor binding data
por: Budden, David M, et al.
Publicado: (2014) -
A Framework for Exploring Functional Variability in Olfactory Receptor Genes
por: Man, Orna, et al.
Publicado: (2007)