Cargando…
Learning Latent Variable Gaussian Graphical Model for Biomolecular Network with Low Sample Complexity
Learning a Gaussian graphical model with latent variables is ill posed when there is insufficient sample complexity, thus having to be appropriately regularized. A common choice is convex ℓ (1) plus nuclear norm to regularize the searching process. However, the best estimator performance is not alwa...
Autores principales: | Wang, Yanbo, Liu, Quan, Yuan, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5097857/ https://www.ncbi.nlm.nih.gov/pubmed/27843485 http://dx.doi.org/10.1155/2016/2078214 |
Ejemplares similares
-
Graphical Model Selection for Gaussian Conditional Random Fields in the Presence of Latent Variables
por: Frot, Benjamin, et al.
Publicado: (2018) -
An Introduction to Biomolecular Graphics
por: Mura, Cameron, et al.
Publicado: (2010) -
Structural identifiability of cyclic graphical models of biological networks with latent variables
por: Wang, Yulin, et al.
Publicado: (2016) -
iGNM 2.0: the Gaussian network model database for biomolecular structural dynamics
por: Li, Hongchun, et al.
Publicado: (2016) -
Cancer Genetic Network Inference Using Gaussian Graphical
Models
por: Zhao, Haitao, et al.
Publicado: (2019)