Cargando…

Learning Latent Variable Gaussian Graphical Model for Biomolecular Network with Low Sample Complexity

Learning a Gaussian graphical model with latent variables is ill posed when there is insufficient sample complexity, thus having to be appropriately regularized. A common choice is convex ℓ (1) plus nuclear norm to regularize the searching process. However, the best estimator performance is not alwa...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yanbo, Liu, Quan, Yuan, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5097857/
https://www.ncbi.nlm.nih.gov/pubmed/27843485
http://dx.doi.org/10.1155/2016/2078214

Ejemplares similares