Cargando…
Efficient Regularized Regression with L (0) Penalty for Variable Selection and Network Construction
Variable selections for regression with high-dimensional big data have found many applications in bioinformatics and computational biology. One appealing approach is the L (0) regularized regression which penalizes the number of nonzero features in the model directly. However, it is well known that...
Autores principales: | Liu, Zhenqiu, Li, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5098106/ https://www.ncbi.nlm.nih.gov/pubmed/27843486 http://dx.doi.org/10.1155/2016/3456153 |
Ejemplares similares
-
Sparse logistic regression with a L(1/2) penalty for gene selection in cancer classification
por: Liang, Yong, et al.
Publicado: (2013) -
Penalty, shrinkage and pretest strategies: variable selection and estimation
por: Ahmed, S Ejaz
Publicado: (2014) -
Supporting Regularized Logistic Regression Privately and Efficiently
por: Li, Wenfa, et al.
Publicado: (2016) -
Visualization of Genomic Changes by Segmented Smoothing Using an L
(0) Penalty
por: Rippe, Ralph C. A., et al.
Publicado: (2012) -
Sparse Logistic Regression With L(1/2) Penalty for Emotion Recognition in Electroencephalography Classification
por: Chen, Dong-Wei, et al.
Publicado: (2020)