Cargando…
Insights into a novel nuclear function for Fascin in the regulation of the amino-acid transporter SLC3A2
Fascin 1 (FSCN1) is a cytoskeleton-associated protein recognized to function primarily in the regulation of cytoskeleton structure and formation of plasma membrane protrusions. Here we report a novel nuclear function for Fascin 1. Biochemical studies and genome wide localization using ChIP-seq ident...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5098188/ https://www.ncbi.nlm.nih.gov/pubmed/27819326 http://dx.doi.org/10.1038/srep36699 |
Sumario: | Fascin 1 (FSCN1) is a cytoskeleton-associated protein recognized to function primarily in the regulation of cytoskeleton structure and formation of plasma membrane protrusions. Here we report a novel nuclear function for Fascin 1. Biochemical studies and genome wide localization using ChIP-seq identified phosphorylated Fascin 1 (pFascin) in complexes associated with transcription and that it co-localizes with histone H3 Lys4 trimethylation (H3K4me3) on chromatin. Gene expression profiling identified genes affected by Fascin 1 including SLC3A2, a gene encoding for a plasma membrane transporter that regulates intracellular amino acid levels. RbBP5, a subunit of the H3K4 histone methyltransferase (HMT) complex was found to interact with Fascin 1 supporting its role in H3K4me3 establishment at target genes. Moreover, we show that changes to SLC3A2 levels affect amino acid-mediated mTORC1 activation. These results reveal that Fascin 1 has a yet undiscovered nuclear function as an epigenetic modulator of genes essential for amino acid metabolism. |
---|