Cargando…
Diagnostics of Primary Immunodeficiencies through Next-Generation Sequencing
BACKGROUND: Recently, a growing number of novel genetic defects underlying primary immunodeficiencies (PIDs) have been identified, increasing the number of PID up to more than 250 well-defined forms. Next-generation sequencing (NGS) technologies and proper filtering strategies greatly contributed to...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5098274/ https://www.ncbi.nlm.nih.gov/pubmed/27872624 http://dx.doi.org/10.3389/fimmu.2016.00466 |
_version_ | 1782465753542295552 |
---|---|
author | Gallo, Vera Dotta, Laura Giardino, Giuliana Cirillo, Emilia Lougaris, Vassilios D’Assante, Roberta Prandini, Alberto Consolini, Rita Farrow, Emily G. Thiffault, Isabelle Saunders, Carol J. Leonardi, Antonio Plebani, Alessandro Badolato, Raffaele Pignata, Claudio |
author_facet | Gallo, Vera Dotta, Laura Giardino, Giuliana Cirillo, Emilia Lougaris, Vassilios D’Assante, Roberta Prandini, Alberto Consolini, Rita Farrow, Emily G. Thiffault, Isabelle Saunders, Carol J. Leonardi, Antonio Plebani, Alessandro Badolato, Raffaele Pignata, Claudio |
author_sort | Gallo, Vera |
collection | PubMed |
description | BACKGROUND: Recently, a growing number of novel genetic defects underlying primary immunodeficiencies (PIDs) have been identified, increasing the number of PID up to more than 250 well-defined forms. Next-generation sequencing (NGS) technologies and proper filtering strategies greatly contributed to this rapid evolution, providing the possibility to rapidly and simultaneously analyze large numbers of genes or the whole exome. OBJECTIVE: To evaluate the role of targeted NGS and whole exome sequencing (WES) in the diagnosis of a case series, characterized by complex or atypical clinical features suggesting a PID, difficult to diagnose using the current diagnostic procedures. METHODS: We retrospectively analyzed genetic variants identified through targeted NGS or WES in 45 patients with complex PID of unknown etiology. RESULTS: Forty-seven variants were identified using targeted NGS, while 5 were identified using WES. Newly identified genetic variants were classified into four groups: (I) variations associated with a well-defined PID, (II) variations associated with atypical features of a well-defined PID, (III) functionally relevant variations potentially involved in the immunological features, and (IV) non-diagnostic genotype, in whom the link with phenotype is missing. We reached a conclusive genetic diagnosis in 7/45 patients (~16%). Among them, four patients presented with a typical well-defined PID. In the remaining three cases, mutations were associated with unexpected clinical features, expanding the phenotypic spectrum of typical PIDs. In addition, we identified 31 variants in 10 patients with complex phenotype, individually not causative per se of the disorder. CONCLUSION: NGS technologies represent a cost-effective and rapid first-line genetic approach for the evaluation of complex PIDs. WES, despite a moderate higher cost compared to targeted, is emerging as a valuable tool to reach in a timely manner, a PID diagnosis with a considerable potential to draw genotype–phenotype correlation. Nevertheless, a large fraction of patients still remains without a conclusive diagnosis. In these patients, the sum of non-diagnostic variants might be proven informative in future studies with larger cohorts of patients. |
format | Online Article Text |
id | pubmed-5098274 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-50982742016-11-21 Diagnostics of Primary Immunodeficiencies through Next-Generation Sequencing Gallo, Vera Dotta, Laura Giardino, Giuliana Cirillo, Emilia Lougaris, Vassilios D’Assante, Roberta Prandini, Alberto Consolini, Rita Farrow, Emily G. Thiffault, Isabelle Saunders, Carol J. Leonardi, Antonio Plebani, Alessandro Badolato, Raffaele Pignata, Claudio Front Immunol Immunology BACKGROUND: Recently, a growing number of novel genetic defects underlying primary immunodeficiencies (PIDs) have been identified, increasing the number of PID up to more than 250 well-defined forms. Next-generation sequencing (NGS) technologies and proper filtering strategies greatly contributed to this rapid evolution, providing the possibility to rapidly and simultaneously analyze large numbers of genes or the whole exome. OBJECTIVE: To evaluate the role of targeted NGS and whole exome sequencing (WES) in the diagnosis of a case series, characterized by complex or atypical clinical features suggesting a PID, difficult to diagnose using the current diagnostic procedures. METHODS: We retrospectively analyzed genetic variants identified through targeted NGS or WES in 45 patients with complex PID of unknown etiology. RESULTS: Forty-seven variants were identified using targeted NGS, while 5 were identified using WES. Newly identified genetic variants were classified into four groups: (I) variations associated with a well-defined PID, (II) variations associated with atypical features of a well-defined PID, (III) functionally relevant variations potentially involved in the immunological features, and (IV) non-diagnostic genotype, in whom the link with phenotype is missing. We reached a conclusive genetic diagnosis in 7/45 patients (~16%). Among them, four patients presented with a typical well-defined PID. In the remaining three cases, mutations were associated with unexpected clinical features, expanding the phenotypic spectrum of typical PIDs. In addition, we identified 31 variants in 10 patients with complex phenotype, individually not causative per se of the disorder. CONCLUSION: NGS technologies represent a cost-effective and rapid first-line genetic approach for the evaluation of complex PIDs. WES, despite a moderate higher cost compared to targeted, is emerging as a valuable tool to reach in a timely manner, a PID diagnosis with a considerable potential to draw genotype–phenotype correlation. Nevertheless, a large fraction of patients still remains without a conclusive diagnosis. In these patients, the sum of non-diagnostic variants might be proven informative in future studies with larger cohorts of patients. Frontiers Media S.A. 2016-11-07 /pmc/articles/PMC5098274/ /pubmed/27872624 http://dx.doi.org/10.3389/fimmu.2016.00466 Text en Copyright © 2016 Gallo, Dotta, Giardino, Cirillo, Lougaris, D’Assante, Prandini, Consolini, Farrow, Thiffault, Saunders, Leonardi, Plebani, Badolato and Pignata. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Gallo, Vera Dotta, Laura Giardino, Giuliana Cirillo, Emilia Lougaris, Vassilios D’Assante, Roberta Prandini, Alberto Consolini, Rita Farrow, Emily G. Thiffault, Isabelle Saunders, Carol J. Leonardi, Antonio Plebani, Alessandro Badolato, Raffaele Pignata, Claudio Diagnostics of Primary Immunodeficiencies through Next-Generation Sequencing |
title | Diagnostics of Primary Immunodeficiencies through Next-Generation Sequencing |
title_full | Diagnostics of Primary Immunodeficiencies through Next-Generation Sequencing |
title_fullStr | Diagnostics of Primary Immunodeficiencies through Next-Generation Sequencing |
title_full_unstemmed | Diagnostics of Primary Immunodeficiencies through Next-Generation Sequencing |
title_short | Diagnostics of Primary Immunodeficiencies through Next-Generation Sequencing |
title_sort | diagnostics of primary immunodeficiencies through next-generation sequencing |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5098274/ https://www.ncbi.nlm.nih.gov/pubmed/27872624 http://dx.doi.org/10.3389/fimmu.2016.00466 |
work_keys_str_mv | AT gallovera diagnosticsofprimaryimmunodeficienciesthroughnextgenerationsequencing AT dottalaura diagnosticsofprimaryimmunodeficienciesthroughnextgenerationsequencing AT giardinogiuliana diagnosticsofprimaryimmunodeficienciesthroughnextgenerationsequencing AT cirilloemilia diagnosticsofprimaryimmunodeficienciesthroughnextgenerationsequencing AT lougarisvassilios diagnosticsofprimaryimmunodeficienciesthroughnextgenerationsequencing AT dassanteroberta diagnosticsofprimaryimmunodeficienciesthroughnextgenerationsequencing AT prandinialberto diagnosticsofprimaryimmunodeficienciesthroughnextgenerationsequencing AT consolinirita diagnosticsofprimaryimmunodeficienciesthroughnextgenerationsequencing AT farrowemilyg diagnosticsofprimaryimmunodeficienciesthroughnextgenerationsequencing AT thiffaultisabelle diagnosticsofprimaryimmunodeficienciesthroughnextgenerationsequencing AT saunderscarolj diagnosticsofprimaryimmunodeficienciesthroughnextgenerationsequencing AT leonardiantonio diagnosticsofprimaryimmunodeficienciesthroughnextgenerationsequencing AT plebanialessandro diagnosticsofprimaryimmunodeficienciesthroughnextgenerationsequencing AT badolatoraffaele diagnosticsofprimaryimmunodeficienciesthroughnextgenerationsequencing AT pignataclaudio diagnosticsofprimaryimmunodeficienciesthroughnextgenerationsequencing |