Cargando…
Fabrication and surface modification of poly lactic acid (PLA) scaffolds with epidermal growth factor for neural tissue engineering
In an effort to design biomaterials that may promote repair of the central nervous system, 3-dimensional scaffolds made of electrospun poly lactic acid nanofibers with interconnected pores were fabricated. These scaffolds were functionalized with polyallylamine to introduce amine groups by wet chemi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5098722/ https://www.ncbi.nlm.nih.gov/pubmed/27740881 http://dx.doi.org/10.1080/21592535.2016.1231276 |
Sumario: | In an effort to design biomaterials that may promote repair of the central nervous system, 3-dimensional scaffolds made of electrospun poly lactic acid nanofibers with interconnected pores were fabricated. These scaffolds were functionalized with polyallylamine to introduce amine groups by wet chemistry. Experimental conditions of the amination protocol were thoroughly studied and selected to introduce a high amount of amine group while preserving the mechanical and structural properties of the scaffold. Subsequent covalent grafting of epidermal growth factor was then performed to further tailor these aminated structures. The scaffolds were then tested for their ability to support Neural Stem-Like Cells (NSLCs) culture. Of interest, NSLCs were able to proliferate on these EGF-grafted substrates and remained viable up to 14 d even in the absence of soluble growth factors in the medium. |
---|