Cargando…
Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses
Neuroligins (NLGNs) are postsynaptic cell adhesion molecules that interact trans-synaptically with neurexins to mediate synapse development and function. NLGN2 is only at inhibitory synapses while NLGN3 is at both excitatory and inhibitory synapses. We found that NLGN3 function at inhibitory synapse...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5098909/ https://www.ncbi.nlm.nih.gov/pubmed/27805570 http://dx.doi.org/10.7554/eLife.19236 |
_version_ | 1782465847125606400 |
---|---|
author | Nguyen, Quynh-Anh Horn, Meryl E Nicoll, Roger A |
author_facet | Nguyen, Quynh-Anh Horn, Meryl E Nicoll, Roger A |
author_sort | Nguyen, Quynh-Anh |
collection | PubMed |
description | Neuroligins (NLGNs) are postsynaptic cell adhesion molecules that interact trans-synaptically with neurexins to mediate synapse development and function. NLGN2 is only at inhibitory synapses while NLGN3 is at both excitatory and inhibitory synapses. We found that NLGN3 function at inhibitory synapses in rat CA1 depends on the presence of NLGN2 and identified a domain in the extracellular region that accounted for this functional difference between NLGN2 and 3 specifically at inhibitory synapses. We further show that the presence of a cytoplasmic tail (c-tail) is indispensible, and identified two domains in the c-tail that are necessary for NLGN function at inhibitory synapses. These domains point to a gephyrin-dependent mechanism that is disrupted by an autism-associated mutation at R705 and a gephyrin-independent mechanism reliant on a putative phosphorylation site at S714. Our work highlights unique and separate roles for the extracellular and intracellular regions in specifying and carrying out NLGN function respectively. DOI: http://dx.doi.org/10.7554/eLife.19236.001 |
format | Online Article Text |
id | pubmed-5098909 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-50989092016-11-10 Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses Nguyen, Quynh-Anh Horn, Meryl E Nicoll, Roger A eLife Neuroscience Neuroligins (NLGNs) are postsynaptic cell adhesion molecules that interact trans-synaptically with neurexins to mediate synapse development and function. NLGN2 is only at inhibitory synapses while NLGN3 is at both excitatory and inhibitory synapses. We found that NLGN3 function at inhibitory synapses in rat CA1 depends on the presence of NLGN2 and identified a domain in the extracellular region that accounted for this functional difference between NLGN2 and 3 specifically at inhibitory synapses. We further show that the presence of a cytoplasmic tail (c-tail) is indispensible, and identified two domains in the c-tail that are necessary for NLGN function at inhibitory synapses. These domains point to a gephyrin-dependent mechanism that is disrupted by an autism-associated mutation at R705 and a gephyrin-independent mechanism reliant on a putative phosphorylation site at S714. Our work highlights unique and separate roles for the extracellular and intracellular regions in specifying and carrying out NLGN function respectively. DOI: http://dx.doi.org/10.7554/eLife.19236.001 eLife Sciences Publications, Ltd 2016-11-02 /pmc/articles/PMC5098909/ /pubmed/27805570 http://dx.doi.org/10.7554/eLife.19236 Text en © 2016, Nguyen et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Neuroscience Nguyen, Quynh-Anh Horn, Meryl E Nicoll, Roger A Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses |
title | Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses |
title_full | Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses |
title_fullStr | Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses |
title_full_unstemmed | Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses |
title_short | Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses |
title_sort | distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5098909/ https://www.ncbi.nlm.nih.gov/pubmed/27805570 http://dx.doi.org/10.7554/eLife.19236 |
work_keys_str_mv | AT nguyenquynhanh distinctrolesforextracellularandintracellulardomainsinneuroliginfunctionatinhibitorysynapses AT hornmeryle distinctrolesforextracellularandintracellulardomainsinneuroliginfunctionatinhibitorysynapses AT nicollrogera distinctrolesforextracellularandintracellulardomainsinneuroliginfunctionatinhibitorysynapses |