Cargando…

The Effect of Cilostazol on Endothelial Function as Assessed by Flow-Mediated Dilation in Patients with Coronary Artery Disease

Aim: The vascular endothelium plays a key role in the pathophysiology of atherosclerosis. Flow-mediated dilation (FMD) is a novel way of assessing endothelial function. Cilostazol is a unique antiplatelet drug that also has the potential to improve endothelial function. The objective of this present...

Descripción completa

Detalles Bibliográficos
Autores principales: Mori, Hiroyoshi, Maeda, Atsuo, Wakabayashi, Kohei, Sato, Tokutada, Sasai, Masahiro, Tashiro, Kazuma, Iso, Yoshitaka, Ebato, Mio, Suzuki, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japan Atherosclerosis Society 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5098917/
https://www.ncbi.nlm.nih.gov/pubmed/27169919
http://dx.doi.org/10.5551/jat.32912
Descripción
Sumario:Aim: The vascular endothelium plays a key role in the pathophysiology of atherosclerosis. Flow-mediated dilation (FMD) is a novel way of assessing endothelial function. Cilostazol is a unique antiplatelet drug that also has the potential to improve endothelial function. The objective of this present study was to investigate the effects of cilosatzol on endothelial function as assessed by FMD. Methods: Fifty-one patients with coronary artery disease (CAD) were assigned to one of two groups: the Cilostazol(+) group (with cilostazol) and Cilostazol(−) group (without cilostazol). In addition to conventional dual antiplatelet therapy with aspirin and clopidogrel/ticlopidine, the Cilostazol(+) group (n = 27) was also given cilostazol (100 mg/day). The Cilostazol(−) group (n = 24) did not receive cilostazol. FMD was assessed at enrollment and after 6–9 months. Results: The FMD of both the Cilostazol(+) and Cilostazol(−) groups remained similar at 5.2 (interquartile range: 3.8–8.5) to 5.4 (interquartile range: 4.2–6.7) (P = 0.29) and 5.0 (interquartile range: 3.6–6.4) to 4.9 (interquartile range: 4.0–7.0) (P = 0.38), respectively. However, the diameters of the baseline and maximal brachial arteries tended to increase in the Cilostazol(−) group (baseline: 4.2 ± 0.7 to 4.4 ± 0.7, P = 0.18; maximal: 4.5 ± 0.7 to 4.6 ± 0.7 P = 0.22), whereas that of the Cilostazol(−) group tended to decrease (baseline: 4.1 ± 0.6 to 3.9 ± 0.5, P = 0.10; maximal: 4.3 ± 0.7 to 4.1 ± 0.5, P = 0.05). The rates of change in the baseline diameter (Cilostazol(+): 3.7 ± 9.8% vs. Cilostazol(−): −3.8 ± 12.2%, P = 0.03) and maximal diameter (Cilostazol(+): +3.1 ± 8.9% vs. Cilostazol(−): −4.4 ± 12.0%, P = 0.02) were significantly different. Conclusion: Although cilostazol didn't affect the FMD, there was a significant difference in the rates of change in baseline and maximal brachial artery diameter. This may have a beneficial effect in patients with cardiovascular disease.