Cargando…

Manganese-mediated acceleration of age-related hearing loss in mice

Despite the fact that manganese (Mn) is known to be a neurotoxic element relevant to age-related disorders, the risk of oral exposure to Mn for age-related hearing loss remains unclear. In this study, we orally exposed wild-type young adult mice to Mn (Mn-exposed WT-mice) at 1.65 and 16.50 mg/L for...

Descripción completa

Detalles Bibliográficos
Autores principales: Ohgami, Nobutaka, Yajima, Ichiro, Iida, Machiko, Li, Xiang, Oshino, Reina, Kumasaka, Mayuko Y., Kato, Masashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5099889/
https://www.ncbi.nlm.nih.gov/pubmed/27824154
http://dx.doi.org/10.1038/srep36306
Descripción
Sumario:Despite the fact that manganese (Mn) is known to be a neurotoxic element relevant to age-related disorders, the risk of oral exposure to Mn for age-related hearing loss remains unclear. In this study, we orally exposed wild-type young adult mice to Mn (Mn-exposed WT-mice) at 1.65 and 16.50 mg/L for 4 weeks. Mn-exposed WT-mice showed acceleration of age-related hearing loss. Mn-exposed WT-mice had neurodegeneration of spiral ganglion neurons (SGNs) with increased number of lipofuscin granules. Mn-exposed WT-mice also had increased hypoxia-inducible factor-1 alpha (Hif-1α) protein with less hydroxylation at proline 564 and decreased c-Ret protein in SGNs. Mn-mediated acceleration of age-related hearing loss involving neurodegeneration of SGNs was rescued in RET-transgenic mice carrying constitutively activated RET. Thus, oral exposure to Mn accelerates age-related hearing loss in mice with Ret-mediated neurodegeneration of SGNs.