Cargando…
A new statistical framework for genetic pleiotropic analysis of high dimensional phenotype data
BACKGROUND: The widely used genetic pleiotropic analyses of multiple phenotypes are often designed for examining the relationship between common variants and a few phenotypes. They are not suited for both high dimensional phenotypes and high dimensional genotype (next-generation sequencing) data. To...
Autores principales: | Wang, Panpan, Rahman, Mohammad, Jin, Li, Xiong, Momiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5100198/ https://www.ncbi.nlm.nih.gov/pubmed/27821073 http://dx.doi.org/10.1186/s12864-016-3169-1 |
Ejemplares similares
-
Statistical Analysis of High-Dimensional Genetic Data in Complex Traits
por: Park, Taesung, et al.
Publicado: (2015) -
Weighted pedigree-based statistics for testing the association of rare variants
por: Shugart, Yin Yao, et al.
Publicado: (2012) -
Functional regression method for whole genome eQTL epistasis analysis with sequencing data
por: Xu, Kelin, et al.
Publicado: (2017) -
Bayesian functional regression as an alternative statistical analysis of high-throughput phenotyping data of modern agriculture
por: Montesinos-López, Abelardo, et al.
Publicado: (2018) -
GATE: an efficient procedure in study of pleiotropic genetic associations
por: Zhang, Wei, et al.
Publicado: (2017)