Cargando…

Five factors can reconstitute all three phases of microtubule polymerization dynamics

Cytoplasmic microtubules (MTs) undergo growth, shrinkage, and pausing. However, how MT polymerization cycles are produced and spatiotemporally regulated at a molecular level is unclear, as the entire cycle has not been recapitulated in vitro with defined components. In this study, we reconstituted d...

Descripción completa

Detalles Bibliográficos
Autores principales: Moriwaki, Takashi, Goshima, Gohta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5100292/
https://www.ncbi.nlm.nih.gov/pubmed/27799364
http://dx.doi.org/10.1083/jcb.201604118
Descripción
Sumario:Cytoplasmic microtubules (MTs) undergo growth, shrinkage, and pausing. However, how MT polymerization cycles are produced and spatiotemporally regulated at a molecular level is unclear, as the entire cycle has not been recapitulated in vitro with defined components. In this study, we reconstituted dynamic MT plus end behavior involving all three phases by mixing tubulin with five Drosophila melanogaster proteins (EB1, XMAP215(Msps), Sentin, kinesin-13(Klp10A), and CLASP(Mast/Orbit)). When singly mixed with tubulin, CLASP(Mast/Orbit) strongly inhibited MT catastrophe and reduced the growth rate. However, in the presence of the other four factors, CLASP(Mast/Orbit) acted as an inducer of pausing. The mitotic kinase Plk1(Polo) modulated the activity of CLASP(Mast/Orbit) and kinesin-13(Klp10A) and increased the dynamic instability of MTs, reminiscent of mitotic cells. These results suggest that five conserved proteins constitute the core factors for creating dynamic MTs in cells and that Plk1-dependent phosphorylation is a crucial event for switching from the interphase to mitotic mode.