Cargando…
Set7 mediated interactions regulate transcriptional networks in embryonic stem cells
Histone methylation by lysine methyltransferase enzymes regulate the expression of genes implicated in lineage specificity and cellular differentiation. While it is known that Set7 catalyzes mono-methylation of histone and non-histone proteins, the functional importance of this enzyme in stem cell d...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5100561/ https://www.ncbi.nlm.nih.gov/pubmed/27439711 http://dx.doi.org/10.1093/nar/gkw621 |
_version_ | 1782466163641417728 |
---|---|
author | Tuano, Natasha K. Okabe, Jun Ziemann, Mark Cooper, Mark E. El-Osta, Assam |
author_facet | Tuano, Natasha K. Okabe, Jun Ziemann, Mark Cooper, Mark E. El-Osta, Assam |
author_sort | Tuano, Natasha K. |
collection | PubMed |
description | Histone methylation by lysine methyltransferase enzymes regulate the expression of genes implicated in lineage specificity and cellular differentiation. While it is known that Set7 catalyzes mono-methylation of histone and non-histone proteins, the functional importance of this enzyme in stem cell differentiation remains poorly understood. We show Set7 expression is increased during mouse embryonic stem cell (mESC) differentiation and is regulated by the pluripotency factors, Oct4 and Sox2. Transcriptional network analyses reveal smooth muscle (SM) associated genes are subject to Set7-mediated regulation. Furthermore, pharmacological inhibition of Set7 activity confirms this regulation. We observe Set7-mediated modification of serum response factor (SRF) and mono-methylation of histone H4 lysine 4 (H3K4me1) regulate gene expression. We conclude the broad substrate specificity of Set7 serves to control key transcriptional networks in embryonic stem cells. |
format | Online Article Text |
id | pubmed-5100561 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-51005612016-11-10 Set7 mediated interactions regulate transcriptional networks in embryonic stem cells Tuano, Natasha K. Okabe, Jun Ziemann, Mark Cooper, Mark E. El-Osta, Assam Nucleic Acids Res Gene regulation, Chromatin and Epigenetics Histone methylation by lysine methyltransferase enzymes regulate the expression of genes implicated in lineage specificity and cellular differentiation. While it is known that Set7 catalyzes mono-methylation of histone and non-histone proteins, the functional importance of this enzyme in stem cell differentiation remains poorly understood. We show Set7 expression is increased during mouse embryonic stem cell (mESC) differentiation and is regulated by the pluripotency factors, Oct4 and Sox2. Transcriptional network analyses reveal smooth muscle (SM) associated genes are subject to Set7-mediated regulation. Furthermore, pharmacological inhibition of Set7 activity confirms this regulation. We observe Set7-mediated modification of serum response factor (SRF) and mono-methylation of histone H4 lysine 4 (H3K4me1) regulate gene expression. We conclude the broad substrate specificity of Set7 serves to control key transcriptional networks in embryonic stem cells. Oxford University Press 2016-11-02 2016-07-20 /pmc/articles/PMC5100561/ /pubmed/27439711 http://dx.doi.org/10.1093/nar/gkw621 Text en © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Gene regulation, Chromatin and Epigenetics Tuano, Natasha K. Okabe, Jun Ziemann, Mark Cooper, Mark E. El-Osta, Assam Set7 mediated interactions regulate transcriptional networks in embryonic stem cells |
title | Set7 mediated interactions regulate transcriptional networks in embryonic stem cells |
title_full | Set7 mediated interactions regulate transcriptional networks in embryonic stem cells |
title_fullStr | Set7 mediated interactions regulate transcriptional networks in embryonic stem cells |
title_full_unstemmed | Set7 mediated interactions regulate transcriptional networks in embryonic stem cells |
title_short | Set7 mediated interactions regulate transcriptional networks in embryonic stem cells |
title_sort | set7 mediated interactions regulate transcriptional networks in embryonic stem cells |
topic | Gene regulation, Chromatin and Epigenetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5100561/ https://www.ncbi.nlm.nih.gov/pubmed/27439711 http://dx.doi.org/10.1093/nar/gkw621 |
work_keys_str_mv | AT tuanonatashak set7mediatedinteractionsregulatetranscriptionalnetworksinembryonicstemcells AT okabejun set7mediatedinteractionsregulatetranscriptionalnetworksinembryonicstemcells AT ziemannmark set7mediatedinteractionsregulatetranscriptionalnetworksinembryonicstemcells AT coopermarke set7mediatedinteractionsregulatetranscriptionalnetworksinembryonicstemcells AT elostaassam set7mediatedinteractionsregulatetranscriptionalnetworksinembryonicstemcells |