Cargando…

Effect of Transplanting Various Concentrations of a Composite of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Hyaluronic Acid Hydrogel on Articular Cartilage Repair in a Rabbit Model

BACKGROUND: Mesenchymal stem cells (MSCs) are known to have therapeutic potential for cartilage repair. However, the optimal concentration of MSCs for cartilage repair remains unclear. Therefore, we aimed to explore the feasibility of cartilage repair by human umbilical cord blood-derived MSCs (hUCB...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Yong-Beom, Ha, Chul-Won, Kim, Jin-A, Rhim, Ji-Heon, Park, Yong-Geun, Chung, Jun Young, Lee, Han-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5100912/
https://www.ncbi.nlm.nih.gov/pubmed/27824874
http://dx.doi.org/10.1371/journal.pone.0165446
Descripción
Sumario:BACKGROUND: Mesenchymal stem cells (MSCs) are known to have therapeutic potential for cartilage repair. However, the optimal concentration of MSCs for cartilage repair remains unclear. Therefore, we aimed to explore the feasibility of cartilage repair by human umbilical cord blood-derived MSCs (hUCB-MSCs) and to determine the optimal concentrations of the MSCs in a rabbit model. METHODS: Osteochondral defects were created in the trochlear groove of femur in 55 rabbits. Four experimental groups (11 rabbits/group) were treated by transplanting the composite of hUCB-MSCs and HA with various MSCs concentrations (0.1, 0.5, 1.0, and 1.5 x 10(7) cells/ml). One control group was left untreated. At 4, 8, and 16 weeks post-transplantation, the degree of cartilage repair was evaluated grossly and histologically. FINDINGS: Overall, transplanting hUCB-MSCs and HA hydrogel resulted in cartilage repair tissue with better quality than the control without transplantation (P = 0.015 in 0.1, P = 0.004 in 0.5, P = 0.004 in 1.0, P = 0.132 in 1.5 x 10(7) cells/ml). Interestingly, high cell concentration of hUCB-MSCs (1.5×10(7) cells/ml) was inferior to low cell concentrations (0.1, 0.5, and 1.0 x 10(7) cells/ml) in cartilage repair (P = 0.394,P = 0.041, P = 0.699, respectively). The 0.5 x 10(7) cells/ml group showed the highest cartilage repair score at 4, 8 and 16 weeks post transplantation, and followed by 0.1x10(7) cells/ml group or 1.0 x 10(7) cell/ml group. CONCLUSIONS: The results of this study suggest that transplantation of the composite of hUCB-MSCs and HA is beneficial for cartilage repair. In addition, this study shows that optimal MSC concentration needs to be determined for better cartilage repair.