Cargando…
Error-Correcting Output Codes in Classification of Human Induced Pluripotent Stem Cell Colony Images
The purpose of this paper is to examine how well the human induced pluripotent stem cell (hiPSC) colony images can be classified using error-correcting output codes (ECOC). Our image dataset includes hiPSC colony images from three classes (bad, semigood, and good) which makes our classification task...
Autores principales: | Joutsijoki, Henry, Haponen, Markus, Rasku, Jyrki, Aalto-Setälä, Katriina, Juhola, Martti |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5101360/ https://www.ncbi.nlm.nih.gov/pubmed/27847810 http://dx.doi.org/10.1155/2016/3025057 |
Ejemplares similares
-
Machine Learning Approach to Automated Quality Identification of Human Induced Pluripotent Stem Cell Colony Images
por: Joutsijoki, Henry, et al.
Publicado: (2016) -
Detection of genetic cardiac diseases by Ca(2+) transient profiles using machine learning methods
por: Juhola, Martti, et al.
Publicado: (2018) -
Analysis of Drug Effects on iPSC Cardiomyocytes with Machine Learning
por: Juhola, Martti, et al.
Publicado: (2020) -
Novel Analysis Software for Detecting and Classifying Ca(2+) Transient Abnormalities in Stem Cell-Derived Cardiomyocytes
por: Penttinen, Kirsi, et al.
Publicado: (2015) -
CytoSpectre: a tool for spectral analysis of oriented structures on cellular and subcellular levels
por: Kartasalo, Kimmo, et al.
Publicado: (2015)