Cargando…
Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision
In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (C...
Autores principales: | Zhong, Bineng, Pan, Shengnan, Zhang, Hongbo, Wang, Tian, Du, Jixiang, Chen, Duansheng, Cao, Liujuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5101405/ https://www.ncbi.nlm.nih.gov/pubmed/27847827 http://dx.doi.org/10.1155/2016/9406259 |
Ejemplares similares
-
Robust Individual-Cell/Object Tracking via PCANet Deep Network in Biomedicine and Computer Vision
por: Zhong, Bineng, et al.
Publicado: (2016) -
Jointly Feature Learning and Selection for Robust Tracking via a Gating Mechanism
por: Zhong, Bineng, et al.
Publicado: (2016) -
Computer-vision object tracking for monitoring bottlenose dolphin habitat use and kinematics
por: Gabaldon, Joaquin, et al.
Publicado: (2022) -
A guide to convolutional neural networks for computer vision
por: Khan, Salman, et al.
Publicado: (2018) -
Updates to TRACK_TEST and TRACK_VISION Computer Programs
por: Nikezic, Dragoslav, et al.
Publicado: (2021)