Cargando…
Fast generation of W states of superconducting qubits with multiple Schrödinger dynamics
In this paper, we present a protocol to generate a W state of three superconducting qubits (SQs) by using multiple Schrödinger dynamics. The three SQs are respective embedded in three different coplanar waveguide resonators (CPWRs), which are coupled to a superconducting coupler (SCC) qubit at the c...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5101495/ https://www.ncbi.nlm.nih.gov/pubmed/27827422 http://dx.doi.org/10.1038/srep36737 |
Sumario: | In this paper, we present a protocol to generate a W state of three superconducting qubits (SQs) by using multiple Schrödinger dynamics. The three SQs are respective embedded in three different coplanar waveguide resonators (CPWRs), which are coupled to a superconducting coupler (SCC) qubit at the center of the setups. With the multiple Schrödinger dynamics, we build a shortcuts to adiabaticity (STA), which greatly accelerates the evolution of the system. The Rabi frequencies of the laser pulses being designed can be expressed by the superpositions of Gaussian functions via the curves fitting, so that they can be realized easily in experiments. What is more, numerical simulation result shows that the protocol is robust against control parameters variations and decoherence mechanisms, such as the dissipations from the CPWRs and the energy relaxation. In addition, the influences of the dephasing are also resisted on account of the accelerating for the dynamics. Thus, the performance of the protocol is much better than that with the conventional adiabatic passage techniques when the dephasing is taken into account. We hope the protocol could be implemented easily in experiments with current technology. |
---|