Cargando…

Synchronization and Bellerophon states in conformist and contrarian oscillators

The study of synchronization in generalized Kuramoto models has witnessed an intense boost in the last decade. Several collective states were discovered, such as partially synchronized, chimera, π or traveling wave states. We here consider two populations of globally coupled conformist and contraria...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiu, Tian, Boccaletti, Stefano, Bonamassa, Ivan, Zou, Yong, Zhou, Jie, Liu, Zonghua, Guan, Shuguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5101499/
https://www.ncbi.nlm.nih.gov/pubmed/27827411
http://dx.doi.org/10.1038/srep36713
Descripción
Sumario:The study of synchronization in generalized Kuramoto models has witnessed an intense boost in the last decade. Several collective states were discovered, such as partially synchronized, chimera, π or traveling wave states. We here consider two populations of globally coupled conformist and contrarian oscillators (with different, randomly distributed frequencies), and explore the effects of a frequency–dependent distribution of the couplings on the collective behaviour of the system. By means of linear stability analysis and mean–field theory, a series of exact solutions is extracted describing the critical points for synchronization, as well as all the emerging stationary coherent states. In particular, a novel non-stationary state, here named as Bellerophon state, is identified which is essentially different from all other coherent states previously reported in the Literature. A robust verification of the rigorous predictions is supported by extensive numerical simulations.