Cargando…

Ischemic postconditioning and pinacidil suppress calcium overload in anoxia-reoxygenation cardiomyocytes via down-regulation of the calcium-sensing receptor

Ischemic postconditioning (IPC) and ATP sensitive potassium channel (KATP) agonists (e.g. pinacidil and diazoxide) postconditioning are effective methods to defeat myocardial ischemia-reperfusion (I/R) injury, but their specific mechanisms of reducing I/R injury are not fully understood. We observed...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Lin, Cao, Song, Deng, Shengli, Yao, Gang, Yu, Tian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5101590/
https://www.ncbi.nlm.nih.gov/pubmed/27833799
http://dx.doi.org/10.7717/peerj.2612
Descripción
Sumario:Ischemic postconditioning (IPC) and ATP sensitive potassium channel (KATP) agonists (e.g. pinacidil and diazoxide) postconditioning are effective methods to defeat myocardial ischemia-reperfusion (I/R) injury, but their specific mechanisms of reducing I/R injury are not fully understood. We observed an intracellular free calcium ([Ca(2+)](i)) overload in Anoxia/reoxygenation (A/R) cardiomyocytes, which can be reversed by KATP agonists diazoxide or pinacidil. The calcium-sensing receptor (CaSR) regulates intracellular calcium homeostasis. CaSR was reported to be involved in the I/R-induced apoptosis in rat cardiomyocytes. We therefore hypothesize that IPC and pinacidil postconditioning (PPC) reduce calcium overload in I/R cardiomyocytes by the down-regulation of CaSR. A/R model was established with adult rat caridomyocyte. mRNA and protein expression of CaSR were detected, IPC, PPC and KATP’s effects on [Ca(2+)](i) concentration was assayed too. IPC and PPC ameliorated A/R insult induced [Ca(2+)](i) overload in cardiomyocytes. In addition, they down-regulated the mRNA and protein level of CaSR as we expected. CaSR agonist spermine and KATP blocker glibenclamide offset IPC’s effects on CaSR expression and [Ca(2+)](i) modulation. Our data indicate that CaSR down-regulation contributes to the mitigation of calcium overload in A/R cardiomyocytes, which may partially represents IPC and KATP’s myocardial protective mechanism under I/R circumstances.